Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mar Pollut Bull ; 202: 116343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626636

RESUMO

The Deepwater Horizon (DWH) blowout and oil spill began on April 20, 2010 in the northern Gulf of Mexico (NGOM) deep sea (1525 m). Previous studies documented an impacted area of deep-sea floor totaling 321 km2 and were based on taxonomy at the macrofauna family level and the meiofauna major taxonomic level. In the present study, finer taxonomic resolution of the meiofauna community was employed, specifically harpacticoid copepod family biodiversity. Severe or moderate impacts to harpacticoid family biodiversity were observed at 35 of 95 sampling stations, covering an estimated area of 2864 km2, 8.9 times greater impacted area than previously reported. Sensitive and tolerant harpacticoid families were observed in the impact zone. The present study greatly expands the understanding of DWH deep-sea impacts in 2010 and demonstrates that the harpacticoid family-level response is the most sensitive indicator (reported to date) of this oil spill pollution event.


Assuntos
Biodiversidade , Copépodes , Monitoramento Ambiental , Poluição por Petróleo , Animais , Golfo do México , Poluentes Químicos da Água/análise
2.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Copépodes/efeitos dos fármacos , Golfo do México , Tempo (Meteorologia) , Dose Letal Mediana
3.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375852

RESUMO

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Petróleo/toxicidade , Petróleo/análise , Água , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
4.
PeerJ ; 9: e12593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036127

RESUMO

Estuarine ecosystem balance typically relies on strong food web interconnectedness dependent on a relatively low number of resident taxa, presenting a potential ecological vulnerability to extreme ecosystem disturbances. Following the Deepwater Horizon (DwH) oil spill disaster of the northern Gulf of Mexico (USA), numerous ecotoxicological studies showed severe species-level impacts of oil exposure on estuarine fish and invertebrates, yet post-spill surveys found little evidence for severe impacts to coastal populations, communities, or food webs. The acknowledgement that several confounding factors may have limited researchers' abilities to detect negative ecosystem-level impacts following the DwH spill drives the need for direct testing of weathered oil exposure effects on estuarine residents with high trophic connectivity. Here, we describe an experiment that examined the influence of previous exposure to four weathered oil concentrations (control: 0.0 L oil m-2; low: 0.1 L oil m-2; moderate: 0.5-1 L oil m-2; high: 3.0 L oil m-2) on foraging rates of the ecologically important Gulf killifish (Fundulus grandis). Following exposure in oiled saltmarsh mesocosms, killifish were allowed to forage on grass shrimp (Palaeomonetes pugio) for up to 21 h. We found that previous exposure to the high oil treatment reduced killifish foraging rate by ~37% on average, compared with no oil control treatment. Previous exposure to the moderate oil treatment showed highly variable foraging rate responses, while low exposure treatment was similar to unexposed responses. Declining foraging rate responses to previous high weathered oil exposure suggests potential oil spill influence on energy transfer between saltmarsh and off-marsh systems. Additionally, foraging rate variability at the moderate level highlights the large degree of intraspecific variability for this sublethal response and indicates this concentration represents a potential threshold of oil exposure influence on killifish foraging. We also found that consumption of gravid vs non-gravid shrimp was not independent of prior oil exposure concentration, as high oil exposure treatment killifish consumed ~3× more gravid shrimp than expected. Our study findings highlight the sublethal effects of prior oil exposure on foraging abilities of ecologically valuable Gulf killifish at realistic oil exposure levels, suggesting that important trophic transfers of energy to off-marsh systems may have been impacted, at least in the short-term, by shoreline oiling at highly localized scales. This study provides support for further experimental testing of oil exposure effects on sublethal behavioral impacts of ecologically important estuarine species, due to the likelihood that some ecological ramifications of DwH on saltmarshes likely went undetected.

5.
Sci Total Environ ; 784: 147053, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088039

RESUMO

Microphytobenthic communities play a significant role in nutrient modulation, sediment stabilization, and primary production in seagrass beds, which provide various ecosystem services. We hypothesized that microphytobenthic communities in sediments of chronically oil-exposed seagrass beds will exhibit increased resiliency to stressors associated with oil exposure as opposed to seagrass beds never exposed to oil spills. We prepared 14-liter seawater mesocosms, each containing a submersed macrophyte Ruppia maritima collected from the Chandeleur Islands, Louisiana, and Estero Bay, Florida. Mesocosms were initially exposed to 50% water-accommodated oil fractions (WAF) and subsequently diluted by 50% with daily artificial seawater exchanges over 8 days to simulate tidal dilution. High-throughput amplicon sequencing based on 23S rRNA gene targeting cyanobacteria and chloroplasts of eukaryotic microphytobenthos was conducted to assess the impact of oiling on microphytobenthic communities with additional assessment via microscopy. High-throughput sequencing in combination with traditional microscopic analysis provided a robust examination in which both methods roughly complemented each other. Distinct succession patterns were detected in benthic algal communities of chronically oil-exposed (Louisiana) versus unexposed (Florida) seagrass bed sediments. The impact of oiling in microphytobenthos across all samples showed that benthic diatoms dominated all algal communities with sample percentages ranging from 42 to 97%, followed by cyanobacteria (2 to 50%). It is noteworthy that drastic changes in microphytobenthic community structure in terms of the larger taxonomic level were not observed, rather change occurred at the phylotype level. These results were also confirmed by microscopy. Similarity percentages (SIMPER) analysis identified seven phylotypes (Cyanobacteria, Bacillariophyceae, and Mediophyceae) in the Louisiana samples and one phylotype (Bacillariophyceae) in the Florida samples that increased in relative sequence abundance after oil exposure. The detailed phylotype analysis identifying sentinel microphytobenthic indicators provides a base for future research on benthic microalgae response to ecosystem disturbance.


Assuntos
Poluição por Petróleo , Ecossistema , Florida , Sedimentos Geológicos , Louisiana , Poluição por Petróleo/análise
6.
Mar Pollut Bull ; 168: 112458, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33993041

RESUMO

Phytoplankton and accompanying environmental data (temperature, salinity, secchi depth, stratification, and inorganic nutrients) were analyzed from 672 surface water samples (0 to 1.5 m depth) collected from 95 stations located on the Louisiana shelf between April 1990 and August 2011. Phytoplankton were identified to the lowest practical taxonomic unit from glutaraldehyde-preserved samples using epifluorescent microscopy and reported as cells L-1. Twenty-six phytoplankton taxa (primarily diatoms) that were > 8 µm in size, identified to genus-level resolution and ranked in the top 20 in at least one of three separate categories (average abundance; frequency of occurrence; and bloom frequency) were used in subsequent analyses. Temperature, stratification, and secchi depth constituted the environmental variable combination best related to the phytoplankton community composition patterns across the 672 samples (r = 0.288; p < 0.01) according to BEST analysis (PRIMER 7). The environmental optima of the 26 taxa were calculated using the weighted-averaging algorithm in the C2 program and then used to group the taxa into common phytoplankton clusters (i.e., niches) using PRIMER 7 CLUSTER. The phytoplankton clustered into three groups: Group A (summer assemblage), Group B (winter assemblage), and Group C (spring bloom assemblage). The results demonstrate that the composition of the phytoplankton community is most related to seasonality and physical variables, whereas nutrients appear to play a larger role in driving overall phytoplankton biomass. This study provides a platform to examine phytoplankton responses to future environmental perturbations in the region.


Assuntos
Diatomáceas , Fitoplâncton , Monitoramento Ambiental , Eutrofização , Louisiana , Estações do Ano
7.
Mar Pollut Bull ; 155: 111098, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469757

RESUMO

The 2010 Deepwater Horizon (DwH) oil spill in the Gulf of Mexico discharged ~3.19 million barrels of oil into Gulf waters, making it one of the largest marine disasters in history in terms of volume. We report on the results of a study to assess oil impacts to coastal fishes and invertebrates. Using two-decades of fisheries-independent data in coastal Alabama and Mississippi, we document variability following both natural and anthropogenic disturbances from two periods pre-DwH (1997-2001 and 2007-2009), one intra-spill period for acute DwH effects (2010-2012) and one period post-spill for chronic, longer-term impacts (2014-2017). Results indicated significant changes to community structure, relative abundance, and diversity in the intra-spill period. Causation for changes is confounded by variables such as behavioral emigration, altered freshwater inflow, death of consumers, and the mandated fishery closure. Results highlight the need for long-term, comprehensive monitoring/observing systems to provide adequate background for assessing future disturbances.


Assuntos
Desastres , Poluição por Petróleo , Poluentes Químicos da Água/análise , Alabama , Animais , Monitoramento Ambiental , Golfo do México , Mississippi
8.
Mar Environ Res ; 157: 104928, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275510

RESUMO

Macondo source oils and artificially weathered oil residues from 150 °C+ to 300 °C+, including artificially photo oxidized oils, were prepared and used for generating low energy water accommodated fractions (LE-WAFs) in order to assess the impact of oil weathering on WAF chemistry composition and toxicity to marine organisms. Two pelagic species representing primary producers (the marine algae Skeletonema pseudocostatum) and invertebrates (the marine copepod Acartia tonsa) were tested. Obtained acute toxicity levels, expressed as EC/LC50 values, were in the same range or above the obtained maximum WAF concentrations for WAFs from most weathering degrees. Based on % WAF dilutions, reduced toxicity was determined as a function of weathering. The chemical compositions of all WAFs were compared to compositions obtained from water samples reported in the GRIIDC database using multivariate analysis, indicating that WAFs of photo oxidized and two field weathered oils resembled the field data the most.


Assuntos
Poluição por Petróleo , Petróleo/toxicidade , Animais , Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Oxirredução , Hidrocarbonetos Policíclicos Aromáticos , Testes de Toxicidade Aguda , Poluentes Químicos da Água
9.
PeerJ ; 8: e10587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384905

RESUMO

Oil spills threaten the structure and function of ecological communities. The Deepwater Horizon spill was predicted to have catastrophic consequences for nearshore fishes, but field studies indicate resilience in populations and communities. Previous research indicates many marsh fishes exhibit avoidance of oil contaminated areas, representing one potential mechanism for this resilience. Here, we test whether prior oil exposure of Gulf killifish Fundulus grandis alters this avoidance response. Using choice tests between unoiled and oiled sediments at one of three randomized concentrations (low: 0.1 L oil m-2, medium: 0.5 L oil m-2, or high: 3.0 L oil m-2), we found that, even at low prior exposure levels, killifish lose recognition of oiled sediments compared to control, unexposed fish. Preference for unoiled sediments was absent across all oil concentrations after oil exposure, and some evidence for preference of oiled sediments at high exposure was demonstrated. These results highlight the lack of response to toxic environments in exposed individuals, indicating altered behavior despite organism survival. Future research should document additional sublethal consequences that affect ecosystem and food web functioning.

10.
Evol Appl ; 10(8): 813-828, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29151873

RESUMO

The BP Deepwater Horizon Oil Disaster was the most catastrophic offshore oil spill in U.S. history, yet we still have a poor understanding of how organisms could evolve in response to the toxic effects of crude oil. This study offers a rare analysis of how fitness-related traits could evolve rapidly in response to crude oil toxicity. We examined evolutionary responses of populations of the common copepod Eurytemora affinis residing in the Gulf of Mexico, by comparing crude oil tolerance of populations collected before versus after the Deepwater Horizon oil spill of 2010. In addition, we imposed laboratory selection for crude oil tolerance for ~8 generations, using an E. affinis population collected from before the oil spill. We found evolutionary increases in crude oil tolerance in the wild population following the oil spill, relative to the population collected before the oil spill. The post-oil spill population showed increased survival and rapid development time in the presence of crude oil. In contrast, evolutionary responses following laboratory selection were less clear; though, development time from metamorphosis to adult in the presence of crude oil did become more rapid after selection. We did find that the wild population, used in both experiments, harbored significant genetic variation in crude oil tolerance, upon which selection could act. Thus, our study indicated that crude oil tolerance could evolve, but perhaps not on the relatively short time scale of the laboratory selection experiment. This study contributes novel insights into evolutionary responses to crude oil, in directly examining fitness-related traits before and after an oil spill, and in observing evolutionary responses following laboratory selection.

11.
Proc Natl Acad Sci U S A ; 114(28): 7432-7437, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652349

RESUMO

The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia, Cycloclasticus, and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Poluição por Petróleo , Petróleo , Bactérias/metabolismo , Biodiversidade , Simulação por Computador , Genoma Bacteriano , Golfo do México , Filogenia , RNA Ribossômico 16S/análise , Fatores de Tempo , Microbiologia da Água
12.
Environ Pollut ; 229: 329-338, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28605720

RESUMO

In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0-3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ14C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Alcanos/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Golfo do México , Petróleo/análise
13.
Mar Pollut Bull ; 118(1-2): 328-340, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28302359

RESUMO

Olefin-based synthetic-based drilling mud (SBM) was released into the Gulf of Mexico as a result of the Deepwater Horizon (DWH) disaster in 2010. We studied the composition of neat SBM and, using conventional GC-FID, the extent, concentration, and chemical character of SBM-derived olefins in >3600 seafloor sediments collected in 2010/2011 and 2014. SBM-derived (C14-C20) olefins occurred (up to 10cm deep) within a 6.5km2 "footprint" around the well. The olefin concentration in most sediments decreased an order of magnitude between 2010/2011 and 2014, at least in part due to biodegradation, evidenced by the preferential loss C16 and C18 linear (α- and internal) versus branched olefins. Based on their persistence for 4-years in sediments around the Macondo well, and 13-years near a former unrelated drill site (~62km away), weathered SBM-derived olefins released during the DWH disaster are anticipated to persist in deep-sea sediment for (at least) a comparable duration.


Assuntos
Alcenos/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Desastres , Golfo do México , México , Água do Mar/química
14.
Mar Pollut Bull ; 113(1-2): 316-323, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27726932

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have been reported to absorb ultraviolet (UV) light, resulting in enhanced toxicity. Early developmental stages of bivalves may be particularly susceptible to photo-enhanced toxicity during oil spills. In the current study, toxicity tests were conducted with sperm and three larval ages of the eastern oyster (Crassostrea virginica) to evaluate the photo-enhanced toxicity of low-energy water-accommodated fractions (WAFs) of two weathered Macondo crude oils collected from the Deepwater Horizon incident. Larvae exposed to oil WAFs under UV-filtered light demonstrated consistently higher survival and normal development than larvae exposed to WAFs under UV light. The phototoxicity of weathered Macondo oil increased as a function of increasing UV light intensity and dose. Early developing oyster larvae were the most sensitive to photo-enhanced toxicity, whereas later shelled prodissoconch larvae were insensitive. Comparisons between two weathered crude oils demonstrated that toxicity was dependent on phototoxic PAH concentration and UV light intensity.


Assuntos
Crassostrea/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Animais , Crassostrea/crescimento & desenvolvimento , Golfo do México , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Petróleo/análise , Petróleo/efeitos da radiação , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos da radiação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Tempo (Meteorologia)
15.
Biodivers Data J ; (4): e8728, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660530

RESUMO

BACKGROUND: The 2010 Gulf of Mexico Oil Spill took place over 180,000 square kilometers during a 12-week period over five years ago; however, this event continues to influence the development and distribution of organisms in and around the region of the disaster. Here we examine fish species that may have been most affected by noting their past distribution in the region of the spill and examining data of known collecting events over the last 10 years (five years prior to the spill, five years post spill). NEW INFORMATION: We found that more than half of the endemic fish species of the Gulf (45 of 77).

16.
Mar Pollut Bull ; 110(1): 316-323, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27349381

RESUMO

Qualitative inferences and sparse bay-wide measurements suggest that shoreline erosion increased after the 2010 BP Deepwater Horizon (DWH) disaster, but quantifying the impacts has been elusive at the landscape scale. We quantified the shoreline erosion of 46 islands for before and after the DWH oil spill to determine how much shoreline was lost, if the losses were temporary, and if recovery/restoration occurred. The erosion rates at the oiled islands increased to 275% in the first six months after the oiling, were 200% of that of the unoiled islands for the first 2.5years after the oiling, and twelve times the average land loss in the deltaic plain of 0.4%y(-1) from 1988 to 2011. These results support the hypothesis that oiling compromised the belowground biomass of the emergent vegetation. The islands are, in effect, sentinels of marsh stability already in decline before the oil spill.


Assuntos
Meio Ambiente , Poluição por Petróleo , Áreas Alagadas , Desastres , Golfo do México , Ilhas , Louisiana , Solo
17.
Sci Total Environ ; 557-558: 453-68, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27017076

RESUMO

Because of the extreme conditions of the Deepwater Horizon (DWH) release (turbulent flow at 1500m depth and 5°C water temperature) and the sub-surface application of dispersant, small but neutrally buoyant oil droplets <70µm were formed, remained in the water column and were subjected to in-situ biodegradation processes. In order to investigate the biodegradation of Macondo oil components during the release, we designed and performed an experiment to evaluate the interactions of the indigenous microbial communities present in the deep waters of the Gulf of Mexico (GOM) with oil droplets of two representative sizes (10µm and 30µm median volume diameter) created with Macondo source oil in the presence of Corexit 9500 using natural seawater collected at the depth of 1100-1300m in the vicinity of the DWH wellhead. The evolution of the oil was followed in the dark and at 5°C for 64days by collecting sacrificial water samples at fixed intervals and analyzing them for a wide range of chemical and biological parameters including volatile components, saturated and aromatic hydrocarbons, dispersant markers, dissolved oxygen, nutrients, microbial cell counts and microbial population dynamics. A one phase exponential decay from a plateau model was used to calculate degradation rates and lag times for more than 150 individual oil components. Calculations were normalized to a conserved petroleum biomarker (30αß-hopane). Half-lives ranged from about 3days for easily degradable compounds to about 60days for higher molecular weight aromatics. Rapid degradation was observed for BTEX, 2-3 ring PAHs, and n-alkanes below n-C23. The results in this experimental study showed good agreement with the n-alkane (n-C13 to n-C26) half-lives (0.6-9.5days) previously reported for the Deepwater Horizon plume samples and other laboratory studies with chemically dispersed Macondo oil conducted at low temperatures (<8°C). The responses of the microbial populations also were consistent with what was reported during the actual oil release, e.g. Colwellia, Cycloclasticus and Oceanospirillales (including the specific DWH Oceanospirillales) were present and increased in numbers indicating that they were degrading components of the oil. The consistency of the field and laboratory data indicate that these results could be used, in combination with other field and model data to characterize the dissipation of Macondo oil in the deepwater environment as part of the risk assessment estimations.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Poluição por Petróleo , Petróleo/metabolismo , Água do Mar/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/análise , Gammaproteobacteria , Golfo do México , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/química , Poluentes Químicos da Água/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(45): 15906-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349409

RESUMO

The sinking of the Deepwater Horizon in the Gulf of Mexico led to uncontrolled emission of oil to the ocean, with an official government estimate of ∼ 5.0 million barrels released. Among the pressing uncertainties surrounding this event is the fate of ∼ 2 million barrels of submerged oil thought to have been trapped in deep-ocean intrusion layers at depths of ∼ 1,000-1,300 m. Here we use chemical distributions of hydrocarbons in >3,000 sediment samples from 534 locations to describe a footprint of oil deposited on the deep-ocean floor. Using a recalcitrant biomarker of crude oil, 17α(H),21ß(H)-hopane (hopane), we have identified a 3,200-km(2) region around the Macondo Well contaminated by ∼ 1.8 ± 1.0 × 10(6) g of excess hopane. Based on spatial, chemical, oceanographic, and mass balance considerations, we calculate that this contamination represents 4-31% of the oil sequestered in the deep ocean. The pattern of contamination points to deep-ocean intrusion layers as the source and is most consistent with dual modes of deposition: a "bathtub ring" formed from an oil-rich layer of water impinging laterally upon the continental slope (at a depth of ∼ 900-1,300 m) and a higher-flux "fallout plume" where suspended oil particles sank to underlying sediment (at a depth of ∼ 1,300-1,700 m). We also suggest that a significant quantity of oil was deposited on the ocean floor outside this area but so far has evaded detection because of its heterogeneous spatial distribution.

19.
Mar Pollut Bull ; 87(1-2): 57-67, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25176275

RESUMO

We measured the concentration of petroleum hydrocarbons in 405 wetland sediment samples immediately before the April 2010 Deepwater Horizon disaster led to their broad-scale oiling, and on nine trips afterwards. The average concentrations of alkanes and PAHs were 604 and 186 times the pre-spill baseline values, respectively. Oil was distributed with some attenuation up to 100m inland from the shoreline for alkanes, but increased for aromatics, and was not well-circumscribed by the rapid shoreline assessments (a.k.a. SCAT) of relative oiling. The concentrations of target alkanes and PAHs in June 2013 were about 1% and 5%, respectively, of the February 2011 concentrations, but remained at 3.7 and 33 times higher, respectively, than in May 2010. A recovery to baseline conditions suggests that the concentration of alkanes may be near baseline values by the end of 2015, but that it may take decades for the PAH concentrations to be that low.


Assuntos
Poluição por Petróleo , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química , Áreas Alagadas , Louisiana , Mississippi
20.
Mar Pollut Bull ; 86(1-2): 291-297, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127500

RESUMO

We determined changes of 28 alkanes and 43 different PAHs in 418 wetland soil samples collected on ten sampling trips to three Louisiana estuaries before and after they were oiled from the 2010 Deepwater Horizon disaster. There was a significant decline in 22 of the 28 alkane analytes (0.42% day(-1)), no change in 6, over 2.5 years. The concentration of five aromatic petroleum hydrocarbons (PAHs) increased (range 0.25-0.70% day(-1)), whereas the total PAH pool did not change. Of these five, naphthalene and C-1-naphthalenes are suggested to be of higher toxicity than the other three because of their relatively higher volatility or solubility. The relative proportions of alkane analytes, but not PAHs, does not yet resemble that in the pre-oiled marshes after 3 years, The trajectories of nine indicators for degradation/weathering were either inconclusive or misleading (alkanes) or confirmed the relatively meager degradation of PAHs.


Assuntos
Alcanos/análise , Monitoramento Ambiental/estatística & dados numéricos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Recuperação e Remediação Ambiental/normas , História do Século XXI , Louisiana , Poluição por Petróleo/história , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA