Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563306

RESUMO

Large and stout snakes commonly consume large prey and use rectilinear crawling; yet, whether body wall distention after feeding impairs rectilinear locomotion is poorly understood. After eating large prey (30-37% body mass), all Boa constrictor tested could perform rectilinear locomotion in the region with the food bolus despite a greatly increased distance between the ribs and the ventral skin that likely lengthens muscles relevant to propulsion. Unexpectedly, out of 11 kinematic variables, only two changed significantly (P<0.05) after feeding: cyclic changes in snake height increased by more than 1.5 times and the longitudinal movements of the ventral skin relative to the skeleton decreased by more than 25%. Additionally, cyclic changes in snake width suggest that the ribs are active and mobile during rectilinear locomotion, particularly in fed snakes, but also in unfed snakes. These kinematic changes suggest that rectilinear actuators reorient more vertically and undergo smaller longitudinal excursions following large prey ingestion, both of which likely act to reduce elongation of these muscles that may otherwise experience substantial strain.


Assuntos
Boidae , Locomoção , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Locomoção/fisiologia , Boidae/fisiologia , Tamanho Corporal , Ingestão de Alimentos/fisiologia
2.
R Soc Open Sci ; 6(8): 182228, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598225

RESUMO

Accurate knowledge of skeletal ontogeny in extant organisms is crucial in understanding important morpho-functional systems and in enabling inferences of the ontogenetic stage of fossil specimens. However, detailed knowledge of skeletal ontogeny is lacking for most squamates, including snakes. Very few studies have discussed postnatal development in snakes, with none incorporating data from all three major ontogenetic stages-embryonic, juvenile and adult. Here, we provide the first analysis encompassing these three ontogenetic stages for any squamate, using the first complete micro-computed tomography (micro-CT)-based segmentations of any non-adult snake, based on fresh specimens of Thamnophis radix. The most significant ontogenetic changes involve the feeding apparatus, with major elongation of the tooth-bearing elements and jaw suspensorium causing a posterior shift in the jaw articulation. This shift enables macrostomy (large-gaped feeding in snakes) and occurs in T. radix via a different developmental trajectory than in most other macrostomatans, indicating that the evolution of macrostomy is more complex than previously thought. The braincase of T. radix is also evolutionarily unique among derived snakes in lacking a crista circumfenestralis, a phenomenon considered herein to represent paedomorphic retention of the embryonic condition. We thus present numerous important challenges to current paradigms regarding snake cranial evolution.

3.
R Soc Open Sci ; 3(11): 160612, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018652

RESUMO

Macrostomy is the anatomical feature present in macrostomatan snakes that permits the ingestion of entire prey with high cross-sectional area. It depends on several anatomical traits in the skeleton and soft tissues, of which the elongation of gnathic complex and backward rotation of the quadrate represent crucial skeletal requirements. Here, the relevance of postnatal development of these skull structures and their relationship with macrohabitat and diet are explored. Contrary to the condition present in lizards and basal snakes that occupy underground macrohabitats, elements of the gnathic complex of most macrostomatan snakes that exploit surface macrohabitats display conspicuous elongation during postnatal growth, relative to the rest of the skull, as well as further backward rotation of the quadrate bone. Remarkably, several clades of small cryptozoic macrostomatans reverse these postnatal transformations and return to a diet based on prey with low cross-sectional area such as annelids, insects or elongated vertebrates, thus resembling the condition present in underground basal snakes. Dietary ontogenetic shift observed in most macrostomatan snakes is directly linked with this ontogenetic trajectory, indicating that this shift is acquired progressively as the gnathic complex elongates and the quadrate rotates backward during postnatal ontogeny. The numerous independent events of reversion in the gnathic complex and prey type choice observed in underground macrostomatans and the presence of skeletal requirements for macrostomy in extinct non-macrostomatan species reinforce the possibility that basal snakes represent underground survivors of clades that had the skeletal requirements for macrostomy. Taken together, the data presented here suggest that macrostomy has been shaped during multiple episodes of occupation of underground and surface macrohabitats throughout the evolution of snakes.

4.
J Exp Biol ; 217(Pt 14): 2445-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803459

RESUMO

Many snakes swallow large prey whole, and this process requires large displacements of the unfused tips of the mandibles and passive stretching of the soft tissues connecting them. Under these conditions, the intermandibular muscles are highly stretched but subsequently recover normal function. In the highly stretched condition we observed in snakes, sarcomere length (SL) increased 210% its resting value (SL0), and actin and myosin filaments no longer overlapped. Myofibrils fell out of register and triad alignment was disrupted. Following passive recovery, SLs returned to 82% SL0, creating a region of double-overlapping actin filaments. Recovery required recoil of intracellular titin filaments, elastic cytoskeletal components for realigning myofibrils, and muscle activation. Stretch of whole muscles exceeded that of sarcomeres as a result of extension of folded terminal tendon fibrils, stretching of extracellular elastin and independent slippage of muscle fibers. Snake intermandibular muscles thus provide a unique model of how basic components of vertebrate skeletal muscle can be modified to permit extreme extensibility.


Assuntos
Citoesqueleto de Actina/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Miofibrilas/fisiologia , Sarcômeros/fisiologia , Serpentes/fisiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Citoesqueleto , Mandíbula , Miofibrilas/ultraestrutura , Sarcômeros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA