Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448068

RESUMO

Pipeline magnetic flux leakage inspection is widely used in the evaluation of material defect detection due to its advantages of having no coupling agent and easy implementation. The quantification of defect size is an important part of magnetic flux leakage testing. Defects of different geometrical dimensions produce signal waveforms with different characteristics after excitation. The key to achieving defect quantification is an accurate description of the relationship between the magnetic leakage signal and the size. In this paper, a calculation model for solving the defect leakage field based on the non-uniform magnetic charge distribution of magnetic dipoles is developed. Based on the traditional uniformly distributed magnetic charge model, the magnetic charge density distribution model is improved. Considering the variation of magnetic charge density with different depth positions, the triaxial signal characteristics of the defect are obtained by vector synthesis calculation. Simultaneous design of excitation pulling experiment. The leakage field distribution of rectangular defects with different geometries is analyzed. The experimental results show that the change in defect size will have an impact on the area of the defect leakage field distribution, and the larger the length and wider the width of the defect, the more sensitive the impact on the leakage field distribution. The solution model is consistent with the experimentally obtained leakage signal distribution law, and the model is a practical guide by which to improve the quality of defect evaluation.


Assuntos
Fenômenos Magnéticos , Fenômenos Físicos
2.
Commun Integr Biol ; 15(1): 1-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186178

RESUMO

The Feelings of Knowing - Fundamental Interoceptive Patterns (FoK-FIP) is a transdisciplinary theory developed to explain elusive phenomena suspected to exist that do not easily lend themselves to empirical measurement. The FoK-FIP theory posits that specialized self-generated biomagnetism and "pure mental" process share similarities with the hypothetical elementary particle described in particle physics, magnetic monopoles with a magnetic charge. Feelings of Knowing (FoK) are "awareness charge" that are self-generated events. Fundamental Interoceptive Patterns (FIP) are restricted oscillatory magnetic fields that are FoK caused phenomena. Further, FoK produces "cognitive force," an observing ego representing specialized interoceptive awareness. Through embodied states, FoK-FIP acts as a "biological node," an informational processing unit in which physiological signals and an observing ego's sensations or feelings are centered. An observing ego cognitively broadcasts using specialized small magnetic signals and four phases of a narrowed range of interoceptive signals. By defining interoceptive signals (i.e., signals of the body's internal state) using FoK-FIP through cognitive broadcasting, an observing ego creates a world it projects around itself. This process is understood through the components map with interoceptive markers (IMs), a novel algorithm based on biological evolution. FoK-FIP-related predictions are described as are empirical studies to test aspects of the theory. The FoK-FIP theory details a path to wellbeing based on a sense of control and capacity for self-care. Mental stability is thought to change as a function of an observing ego's volitional reactions.

3.
Philos Trans A Math Phys Eng Sci ; 376(2134)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373948

RESUMO

Electromagnetic fields carry momentum: [Formula: see text] But if the centre of energy of a (localized) system is at rest, its total momentum must be zero. The compensating term has come to be called 'hidden' momentum: P h = - P em It is (typically) ordinary mechanical momentum, relativistic in nature, and is 'hidden' only in the sense that it is not associated with motion of the system as a whole-only with that of its constituent parts. This article develops a catalogue of field momenta and hidden momenta for ideal electric and magnetic dipoles-both the 'standard' variety made from electric charges and currents and the 'anomalous' variety made from hypothetical magnetic monopoles and their currents-in the presence of electric and magnetic fields (which themselves may be produced by 'standard' or 'anomalous' sources).This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.

4.
Microscopy (Oxf) ; 62 Suppl 1: S55-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23549453

RESUMO

The proof of the Aharonov-Bohm (AB) effect has been one of the most important experiments of the last century and used as essential evidence for the theory of gauge fields. In this article, we look at its fundamental relation to the Dirac monopole and string. Despite the Dirac string being invisible to the AB effect, it can be used to study emergent quasiparticles in condensed matter settings that behave similar to the fundamental monopoles and strings between them. We utilize phase-imaging method based on the AB effect to study the ordering in a one-model system - that of frustrated spin ice - to understand the ordering processes that occur during a magnetic field reversal cycle. The reversal is linked to the propagation of monopole defects linked by flux channels, reminiscent of Dirac strings. Monopole interactions govern the defect densities within the lattice. Furthermore, we exploit these interactions to propose a new ordering method in which high degrees of ground-state ordering can be achieved in a frustrated system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA