Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Rep ; 43(8): 114539, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39052483

RESUMO

The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.


Assuntos
Hipocampo , Corpos Mamilares , Neurônios , Animais , Corpos Mamilares/fisiologia , Neurônios/fisiologia , Camundongos , Hipocampo/fisiologia , Hipocampo/citologia , Masculino , Camundongos Endogâmicos C57BL
2.
Behav Brain Res ; 463: 114919, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408521

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia in elderly individuals, characterized by memory deficits, cognitive decline, and neuropathology. The identification of preclinical markers for AD remains elusive. We employed an ultrasound-evoked spatial memory assay to investigate path integration (PI) in wild type C57BL/6 J and 5xFAD mice. We observed significant recruitment of the mammillary bodies (MB) and subiculum (Sub) - core regions of the Papez circuit during PI, as indicated by increased expression of the immediate early gene c-Fos in C57BL/6 J mice. In 5xFAD mice, amyloid-beta (Aß) vulnerability in the MB and Sub was evident at 3-months of age, preceding widespread pathology at 5-months of age. In parallel, we detected significant behavioral deficits in PI in the 5XFAD mice at 5- but not 3-months of age. Sex based analysis revealed a more profound deficit in males compared to females at 5-months of age. Our data suggest PI may be as an early indicator of AD, potentially associated with dysfunction within the Papez circuit.


Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Lactente , Camundongos Transgênicos , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
3.
J Neuropsychiatry Clin Neurosci ; 36(1): 45-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37415502

RESUMO

OBJECTIVE: Spontaneous confabulation is a symptom in which false memories are conveyed by the patient as true. The purpose of the study was to identify the neuroanatomical substrate of this complex symptom and evaluate the relationship to related symptoms, such as delusions and amnesia. METHODS: Twenty-five lesion locations associated with spontaneous confabulation were identified in a systematic literature search. The network of brain regions functionally connected to each lesion location was identified with a large connectome database (N=1,000) and compared with networks derived from lesions associated with nonspecific (i.e., variable) symptoms (N=135), delusions (N=32), or amnesia (N=53). RESULTS: Lesions associated with spontaneous confabulation occurred in multiple brain locations, but they were all part of a single functionally connected brain network. Specifically, 100% of lesions were connected to the mammillary bodies (familywise error rate [FWE]-corrected p<0.05). This connectivity was specific for lesions associated with confabulation compared with lesions associated with nonspecific symptoms or delusions (FWE-corrected p<0.05). Lesions associated with confabulation were more connected to the orbitofrontal cortex than those associated with amnesia (FWE-corrected p<0.05). CONCLUSIONS: Spontaneous confabulation maps to a common functionally connected brain network that partially overlaps, but is distinct from, networks associated with delusions or amnesia. These findings lend new insight into the neuroanatomical bases of spontaneous confabulation.


Assuntos
Conectoma , Transtornos da Memória , Humanos , Amnésia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Pré-Frontal/patologia , Conjuntos de Dados como Assunto
4.
Neuropsychologia ; 191: 108728, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939875

RESUMO

To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.


Assuntos
Memória Episódica , Humanos , Diencéfalo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Amnésia/diagnóstico por imagem , Rememoração Mental , Corpos Mamilares/diagnóstico por imagem
5.
J Clin Med ; 12(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37176588

RESUMO

Background: Alzheimer's disease (AD) and Korsakoff's syndrome (KS) are two major neurocognitive disorders characterized by amnesia but AD is degenerative while KS is not. The objective is to compare regional volume deficits within the Papez circuit in AD and KS, considering AD progression. Methods: 18 KS patients, 40 AD patients (20 with Moderate AD (MAD) matched on global cognitive deficits with KS patients and 20 with Severe AD (SAD)), and 70 healthy controls underwent structural MRI. Volumes of the hippocampi, thalami, cingulate gyri, mammillary bodies (MB) and mammillothalamic tracts (MTT) were extracted. Results: For the cingulate gyri, and anterior thalamic nuclei, all patient groups were affected compared to controls but did not differ between each other. Smaller volumes were observed in all patient groups compared to controls in the mediodorsal thalamic nuclei and MB, but these regions were more severely damaged in KS than AD. MTT volumes were damaged in KS only. Hippocampi were affected in all patient groups but more severely in the SAD than in the KS and MAD. Conclusions: There are commonalities in the pattern of volume deficits in KS and AD within the Papez circuit with the anterior thalamic nuclei, cingulate cortex and hippocampus (in MAD only) being damaged to the same extent. The specificity of KS relies on the alteration of the MTT and the severity of the MB shrinkage. Further comparative studies including other imaging modalities and a neuropsychological assessment are required.

6.
Surg Radiol Anat ; 45(1): 29-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36536181

RESUMO

PURPOSE: No study has investigated intermammillary relationships using neuroimaging modalities. This study aimed to explore them using magnetic resonance imaging (MRI). MATERIALS AND METHODS: We enrolled 72 patients who underwent conventional MRI examinations, followed by constructive interference steady-state sequence in the coronal plane. The intermammillary distances (IMDs) were measured at the uppermost level of the intermammillary gap (IMDupp) and the lowest level (IMDlow) of the mammillary bodies (MBs). RESULTS: MBs with varying morphologies were consistently delineated. The appearance of both MBs could be classified into four patterns based on the size and relative levels, with the symmetrical type being the most common. Intermammillary relationships exhibited five patterns. In 69%, the IMDupp was discernible and measured 0.7 ± 0.4 mm, while it was not discernible in 31% due to the presence of intermammillary connection and adhesion. The age distribution did not differ between populations with and without discernible IMDupp. The IMDlow was measured 4.4 ± 0.9 mm. Although the IMDlow was not significantly different between both sexes; it was longer in subjects in their 70s. CONCLUSIONS: Intermammillary relationships show variable morphologies with gaps formed between both MBs. The IMDlow may become more evident in association with age-related increase in the width of the third ventricle and atrophy of the MBs.


Assuntos
Terceiro Ventrículo , Masculino , Feminino , Humanos , Corpos Mamilares/diagnóstico por imagem , Corpos Mamilares/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Distribuição por Idade
7.
Neurosci Biobehav Rev ; 140: 104813, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940310

RESUMO

After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.


Assuntos
Núcleos Anteriores do Tálamo , Memória Episódica , Atenção , Hipocampo , Humanos , Sistema Límbico , Vias Neurais
8.
Trends Neurosci ; 45(7): 550-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35599065

RESUMO

The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.


Assuntos
Hipocampo , Hipotálamo , Animais , Cerebelo , Humanos , Aprendizagem , Mamíferos , Vias Neurais/anatomia & histologia , Ratos , Ritmo Teta
9.
Neurobiol Learn Mem ; 187: 107561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838984

RESUMO

INTRODUCTION: The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS: Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS: The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS: These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.


Assuntos
Hipocampo/metabolismo , Rememoração Mental/fisiologia , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Memória Espacial/fisiologia , Animais , Encéfalo/metabolismo , Sistema Límbico/metabolismo , Masculino , Teste do Labirinto Aquático de Morris , Plasticidade Neuronal , Neurônios/metabolismo , Ratos
10.
Neurosci Biobehav Rev ; 121: 60-74, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309908

RESUMO

The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.


Assuntos
Núcleos Anteriores do Tálamo , Corpos Mamilares , Amnésia , Animais , Humanos , Memória , Vias Neurais
11.
Stress ; 24(1): 87-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510270

RESUMO

Unfortunately, adverse environments in early life are frequently found in most human populations. Early life stress leads to diverse cognitive impairments, some of them related to learning and memory and executive functions such as working memory (WM). We employ an animal model of early stress using repeated maternal separation (MS) for 4 h a day on 21 consecutive days, pre-weaning. In adulthood, we tested their spatial WM using the Morris water maze. MS subjects showed a marked delay in the acquisition of the task. In addition, we explored brain energy oxidative metabolism and found an increase in cytochrome c oxidase (CCO) activity in the cingulate cortex, anterior thalamus, and supramammillary areas, indicating an intense effort to successfully solve the WM task. However, decreased CCO activity was found in the medial-medial mammillary nucleus in MS animals, which would partially explain the delayed acquisition of the WM task. Further studies are needed to explore the long-term alterations produced by early stress. LAY SUMMARY A stressful environment caused by the separation of baby rats from the mother for several hours a day in the first stages of postnatal life can be devastating to brain cells, making them look for alternative sources of energy, among other changes. These alterations in brain functional networks would lead to cognitive impairments such as the delayed acquisition of new learning and strategies.


Assuntos
Memória de Curto Prazo , Estresse Psicológico , Animais , Ratos , Encéfalo , Privação Materna , Aprendizagem em Labirinto , Ratos Wistar
12.
Elife ; 92020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33119507

RESUMO

The ventral posterior hypothalamus (VPH) is an anatomically complex brain region implicated in arousal, reproduction, energy balance, and memory processing. However, neuronal cell type diversity within the VPH is poorly understood, an impediment to deconstructing the roles of distinct VPH circuits in physiology and behavior. To address this question, we employed a droplet-based single-cell RNA sequencing (scRNA-seq) approach to systematically classify molecularly distinct cell populations in the mouse VPH. Analysis of >16,000 single cells revealed 20 neuronal and 18 non-neuronal cell populations, defined by suites of discriminatory markers. We validated differentially expressed genes in selected neuronal populations through fluorescence in situ hybridization (FISH). Focusing on the mammillary bodies (MB), we discovered transcriptionally-distinct clusters that exhibit neuroanatomical parcellation within MB subdivisions and topographic projections to the thalamus. This single-cell transcriptomic atlas of VPH cell types provides a resource for interrogating the circuit-level mechanisms underlying the diverse functions of VPH circuits.


Assuntos
Hipotálamo Posterior/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Hipotálamo Posterior/anatomia & histologia , Hipotálamo Posterior/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , Análise de Sequência de RNA , Análise de Célula Única
13.
Neurosci Biobehav Rev ; 119: 268-280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069688

RESUMO

Two thalamic sites are of especial significance for understanding hippocampal - diencephalic interactions: the anterior thalamic nuclei and nucleus reuniens. Both nuclei have dense, direct interconnections with the hippocampal formation, and both are directly connected with many of the same cortical and subcortical areas. These two thalamic sites also contain neurons responsive to spatial stimuli while lesions within these two same areas can disrupt spatial learning tasks that are hippocampal dependent. Despite these many similarities, closer analysis reveals important differences in the details of their connectivity and the behavioural impact of lesions in these two thalamic sites. These nuclei play qualitatively different roles that largely reflect the contrasting relative importance of their medial frontal cortex interactions (nucleus reuniens) compared with their retrosplenial, cingulate, and mammillary body interactions (anterior thalamic nuclei). While the anterior thalamic nuclei are critical for multiple aspects of hippocampal spatial encoding and performance, nucleus reuniens contributes, as required, to aid cognitive control and help select correct from competing memories.


Assuntos
Núcleos Anteriores do Tálamo , Núcleos da Linha Média do Tálamo , Hipocampo , Humanos , Corpos Mamilares , Vias Neurais , Neurônios
14.
Clin Anat ; 33(6): 911-919, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32239548

RESUMO

The mammillothalamic tract (MTT, bundle of Vicq d'Azyr) is a white-matter projection from each mammillary body to the anterior nucleus of the thalamus (ANT). Deep brain stimulation of the MTTs or ANTs is a treatment option for medically refractory focal epilepsy. Since the ANTs may be atrophied in epilepsy, targeting of the MTT terminations could be used as a proxy for ANT locations. However, MTT conspicuity and morphometry on MRI have not been evaluated to date. We investigated normative age- and sex-related MRI morphometrics of the MTTs in healthy individuals. We retrospectively analyzed magnified axial T2-weighted images of 80 subjects for bilateral MTT conspicuity, diameters, areas, shapes, precise locations, and symmetry. We statistically tested the effects of independent variables (sex and MTT side) on measured dependent variables using two-way ANOVA; and performed linear regressions with age as the independent variable for each of the dependent variables. Subjects were F:M = 44:36, with mean age 45.3 years. Only one (0.63%) MTT was inconspicuous. Mean MTT diameter was 1.8 mm, area was 2.0 mm2 , and distance from third ventricle was 3.1 mm. MTTs were mostly bilaterally symmetrical in shape, equally round, or ovoid. The right MTT diameter was larger than the left, and males had larger MTT areas than females. We found no statistical difference between MTT diameters and areas in young, middle-aged, and older adults. We report normative axial MRI morphometrics of the MTTs to guide neuromodulation treatments. Future detailed analyses will determine if the MTTs atrophy in proportion to the ANTs in refractory epilepsy.


Assuntos
Núcleos Anteriores do Tálamo/anatomia & histologia , Núcleos Anteriores do Tálamo/diagnóstico por imagem , Corpos Mamilares/anatomia & histologia , Corpos Mamilares/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto , Fatores Etários , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores Sexuais
15.
Brain Neurosci Adv ; 4: 2398212819899316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219177

RESUMO

The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.

16.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 413-424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31552495

RESUMO

In schizophrenia, decreased hippocampal volume, reduced oligodendrocyte numbers in hippocampal cornu ammonis (CA) subregions and reduced neuron number in the dentate gyrus have been reported; reduced oligodendrocyte numbers were significantly related to cognitive deficits. The hippocampus is involved in cognitive functions and connected to the hypothalamus, anterior thalamus, and cingulate cortex, forming the Papez circuit, and to the mediodorsal thalamus. The relationship between the volume of these interconnected regions and oligodendrocyte and neuron numbers in schizophrenia is unknown. Therefore, we used stepwise logistic regression with subsequent multivariate stepwise linear regression and bivariate correlation to analyze oligodendrocyte and neuron numbers in the posterior hippocampal subregions CA1, CA2/3, CA4, dentate gyrus, and subiculum and volumes of the hippocampal CA region, cingulum, anterior and mediodorsal thalamus and hypothalamus in postmortem brains of 10 schizophrenia patients and 11 age- and gender-matched healthy controls. Stepwise logistic regression identified the following predictors for diagnosis, in order of inclusion: (1) oligodendrocyte number in CA4, (2) hypothalamus volume, (3) oligodendrocyte number in CA2/3, and (4) mediodorsal thalamus volume. Subsequent stepwise linear regression analyses identified the following predictors: (1) for oligodendrocyte number in CA4: (a) oligodendrocyte number in CA2/3, (b) diagnostic group, (c) hypothalamus volume, and (d) neurons in posterior subiculum; (2) for hypothalamus volume: (a) mediodorsal thalamus volume; (3) for oligodendrocyte number in CA2/3: oligodendrocyte number (a) in posterior CA4 and (b) in posterior subiculum; (4) for mediodorsal thalamus volume: volumes of (a) anterior thalamus and (b) hippocampal CA. In conclusion, we found a positive relationship between hippocampal oligodendrocyte number and the volume of the hypothalamus, a brain region connected to the hippocampus, which is important for cognition.


Assuntos
Hipocampo/patologia , Hipotálamo/patologia , Rede Nervosa/patologia , Oligodendroglia/citologia , Esquizofrenia/patologia , Tálamo/patologia , Adulto , Autopsia , Feminino , Hipocampo/citologia , Humanos , Hipotálamo/citologia , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico
17.
J Neurosci ; 39(34): 6696-6713, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31235646

RESUMO

Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.


Assuntos
Amnésia/fisiopatologia , Diencéfalo/fisiopatologia , Hipocampo/fisiopatologia , Corpos Mamilares/fisiopatologia , Vias Neurais/fisiopatologia , Tálamo/fisiopatologia , Amnésia/diagnóstico por imagem , Animais , Diencéfalo/diagnóstico por imagem , Eletroencefalografia , Ritmo Gama , Hipocampo/diagnóstico por imagem , Locomoção , Imageamento por Ressonância Magnética , Masculino , Corpos Mamilares/diagnóstico por imagem , Aprendizagem em Labirinto , Vias Neurais/diagnóstico por imagem , Plasticidade Neuronal , Ratos , Sono REM , Memória Espacial , Tálamo/diagnóstico por imagem , Ritmo Teta
18.
Behav Sci (Basel) ; 8(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424509

RESUMO

We report atypical magnetic resonance imaging (MRI) lesions in a case of Wernicke encephalopathy. The patient presented with isolated anterograde amnesia following a partial colectomy complicated by peritonitis. Fluid-attenuated inversion recovery and T2 MRI sequences were normal. However, bilateral contrast enhancement of mammillary bodies was shown on T1 gadolinium-enhanced sequences. Blood tests revealed thiamine deficiency. The diagnosis of Wernicke encephalopathy was made and thiamine supplementation was given, resulting in complete recovery of the memory functions.

19.
Hippocampus ; 28(2): 121-135, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29150979

RESUMO

The anterior thalamic nuclei (ATN), mammillary bodies and their interconnecting fiber tract, the mammillothalamic tract (MTT), are important components of an extended hippocampal circuit for episodic memory. In humans, damage to the MTT or ATN in many disorders is associated with severe anterograde amnesia and it is assumed that their influence on memory is functionally equivalent. The relative influence of these two structures on memory has not, however, been assessed explicitly. Here, a direct comparison found that only ATN lesions impaired spatial reference memory in rats. ATN lesions produced more severe deficits on spatial working memory and reduced zif268 expression to a greater degree and in more corticolimbic sites than did MTT lesions. Conversely, MTT lesions reduced NeuN cell counts in all three subregions of the MB to a greater extent than did ATN lesions, so their relative impact cannot be explained by retrograde neuropathology of the MB. Hence ATN injury causes a more critical dysfunction than would be expected by an emphasis on the indirect influence of brainstem inputs to the extended memory system. The greater ATN lesion deficits found here may represent the consequence of disruption to the direct connections of the ATN with both hippocampal and cortical sites.


Assuntos
Núcleos Anteriores do Tálamo/lesões , Lesões Encefálicas/patologia , Hipocampo/fisiopatologia , Corpos Mamilares/lesões , Memória Espacial/fisiologia , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Vias Neurais/fisiopatologia , Fosfopiruvato Hidratase/metabolismo , Ratos
20.
Front Neural Circuits ; 11: 62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955209

RESUMO

Hippocampal (HPC) theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs) recorded in the supramammillary/mammillary (SuM/MM) areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC), we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS) inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network.


Assuntos
Hipocampo/fisiologia , Corpos Mamilares/fisiologia , Vias Neurais/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Vigília/fisiologia , Animais , Mapeamento Encefálico , Ratos , Ratos Sprague-Dawley , Estatística como Assunto , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA