Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Water Res ; 267: 122542, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39366325

RESUMO

To mitigate groundwater level decline, managed aquifer recharge (MAR) with secondary treated wastewater (STWW) is increasingly considered and implemented. However, the effectiveness and potential risks of such systems need evaluation prior to implementation. In this study, we present a large-scale sand tank experiment to analyse processes related to the infiltration of real STWW through the vadose zone and subsequent mixing with oxic native groundwater. The varying composition of STWW from 15 infiltration cycles over six months of operation and the retention times were the main drivers of the observed processes, which were characterized by a wide range of analytical techniques such as in situ high-resolution oxidation-reduction potential (ORP) measurements, closed mass balances of solutes, characterization of dissolved organic carbon (DOC), stable nitrate isotopes analysis, as well as numerical flow and transport modelling. Depending on the composition and infiltration rates of the STWW, both nitrification and denitrification could be observed, even simultaneously at different locations in the tank. Furthermore, due to the variability of the real STWW we observed enhanced arsenic mobilisation during times of elevated phosphate concentrations of the infiltrating STWW. Additionally, uranium was mobilised in our experimental system via carbonate mineral dissolution caused by the infiltrating STWW which was undersaturated of calcite for all infiltration cycles. Overall, our results showed the importance of conducting studies with waters of complex matrix, such as real STWW, and considering mixing with groundwater to assess the full range of possible processes encountered at MAR field sites.

3.
Water Res ; 266: 122375, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39260194

RESUMO

Frequent occurrence of trace antibiotics in reclaimed water is concerning, which inevitably causes aquifer contamination in the case of managed aquifer recharge (MAR). Global governments have formulated strict reclaimed water standards to ensure the safety of water reuse. Recent studies have found that improved antibiotics removal is intimately associated with high ammonia-oxidizing activity. However, the role of NH4+-N in the removal of residual antibiotics of reclaimed water during MAR remains unknown. NH4+-N removal and the effects of ammonia oxidation on antibiotics biodegradation in the aquifer are the most significant facts for solving the above collision. In this work, the effects of NH4+-N (0, 1 and 5 mg/L) in a model refractory antibiotic (oxacillin (OXA), 100 µg/L) attenuation were deciphered by employing three individual simulated MAR columns, which so called N0, N1 and N5. The results showed that 5 mg/L NH4+-N in influent upregulated the abundance of amo genes by 28.9 %-68.0 % in N5. And the enriched functional genes encoding key degradation enzymes enhanced the OXA removal by 18.7 % and alleviated the oxidative stress caused by antibiotics. Subsequently, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) and human bacterial pathogens (HBPs) abundance were all significantly decreased. Moreover, the intimate association between ammonia-oxidizing microorganisms (AOM) and candidate OXA degraders based on microbial network analysis further supported the significance of AOM on OXA biodegradation. This study provides comprehensive evidence that appropriate amounts of NH4+-N are beneficial in antibiotics and antibiotic resistance risk reduction, providing compelling insights for refine NH4+-N recharge limitation.

4.
Chemosphere ; 364: 143030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121959

RESUMO

Groundwater is an often-overlooked resource, while its declining quantity and quality is of global concern. To protect and ensure stable quantity and quality of groundwater systems used as drinking water supplies, a common method is to artificially recharge these groundwater supplies with surface water, a process called managed aquifer recharge (MAR), that has been used globally for decades. However, surface waters used for MAR often contain elevated concentrations of anthropogenic chemicals of emerging concern (CECs), such as plastics, pesticides, pharmaceuticals and personal care products (PPCPs), or per- and polyfluoroalkyl substances (PFAS). When infiltrating this surface water, MAR can thus act as a shortcut for CECs into groundwater systems and eventually drinking water supplies. Especially PFAS are an example of very persistent contaminants showing atypical transport patterns during MAR and thus posing a risk for ground- and drinking water contamination. This systematic review addresses the transport process of CECs through MAR systems by looking at (1) common CEC concentrations in surface waters, (2) factors affecting CEC transport and possible retention during MAR, such as sorption and other physio-chemical mechanisms of CECs, biological and chemical decomposition, or hydrogeological properties of the MAR system, and (3) key contaminants leaching through the MAR systems as well as possible treatment options to improve the retention of CECs during MAR. Since we are facing increasing needs for high quality drinking water, lower CEC drinking water guidelines as well as an increasing number of identified CECs in surface waters, we conclude with a series of recommendations and future research directions to address these issues. Those include the need for regular monitoring programs specifically addressing CECs and especially not yet regulated, (very) persistent and (very) mobile contaminants, such as PFAS, as well as redesigned MAR systems to ensure stable ground- and drinking water quantity and quality.


Assuntos
Água Potável , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Água Potável/química , Abastecimento de Água , Praguicidas/análise , Plásticos/análise , Purificação da Água/métodos
5.
Water Res ; 261: 122003, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986283

RESUMO

Droughts are classified as the most expensive climate disasters as they leave long-term and chronic impacts on the ecosystem, agriculture, and human society. The intensity, frequency, and duration of drought events have increased in the past and are expected to continue rising at global, continental, and regional scales. Nature-based solutions (NBS) are highlighted as effective solutions to cope with the future impacts of these events. Despite this, there has been limited comprehensive research on the effectiveness of NBS for drought mitigation, and existing suitability mapping frameworks often overlook drought-specific criteria. To address this gap, a new framework is proposed to identify areas suitable for two drought-coping NBS types at a regional scale: detention basins and managed aquifer recharge. Two multi-criteria decision-making techniques (MCDM), i.e. Boolean logic and Analytic- Hierarchy Process (AHP), were used to map suitable large-scale NBS. The new framework accounts for unique criteria to specifically address drought conditions. By incorporating climate change scenarios for both surface and groundwater, recharge, and different groundwater characteristics, it identifies suitable and sustainable locations capable of managing extreme drought events. Executed through Boolean logic at a regional scale in Flanders (Belgium), the framework's strict approach yields significant potential areas for detention basins (298.7 km²) and managed aquifer recharge (867.5 km²). Incorporating AHP with the same criteria introduces a higher degree of flexibility for decision-makers. This approach shows a notable expansion across Flanders, varying with the level of suitability. The results underscore the highly suitable potential for detention basins (2552.2 km²) and managed aquifer recharge (2538.7 km²), emphasizing the adaptability and scalability of the framework for addressing drought in the region. The comparison between potential recharge volume due to detention basin and groundwater use in the region indicated that the detention basins could partially compensate for the high water demand. Therefore, creating a framework targeting drought is vital for the sustainable management of water scarcity scenarios.


Assuntos
Mudança Climática , Secas , Água Subterrânea , Bélgica
6.
Sci Total Environ ; 944: 173653, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851344

RESUMO

Managed aquifer recharge (MAR) is a promising technique for enhancing groundwater resources and addressing water scarcity. Particularly, this research highlights the novelty and urgent need for MAR facilities in the Chungcheongnam-do region of South Korea as a solution to augment groundwater resources and combat water scarcity. This research encompasses a comprehensive assessment, ranging from laboratory-scale column experiments to pilot-scale tests, focusing on dissolved organic matter (DOM) characterization, natural organic matter (NOM) removal, and water quality improvement, including biological stability. In the laboratory, DOM characteristics of source water and recharged groundwater were analyzed using advanced dissolved organic characteristic tools, and their potential impacts on water quality, as well as per- and polyfluoroalkyl substances (PFASs) were assessed. DOM, total cell counts, and several PFASs with molecular weights >450 Da (particularly long-chain PFASs showing >99.9 % reduction) were effectively reduced in a laboratory-scale experiment. A laboratory-scale column study revealed that most selected PFASs were not effectively removed. Moving to the pilot-scale, a series of experiments were conducted to assess NOM removal during soil passage. Similar to the results of the laboratory-scale experiment, MAR demonstrated significant potential for reducing NOM concentrations, thus improving water quality. Regarding biological stability, assimilable organic carbon in production well (i.e., final produced water by MAR process) was lower than both two sources of surface water (e.g., SW1 and SW2). This suggests that water derived from PW (i.e., production well) exhibited biological stability, undergoing effective biodegradation by aerobic bacteria during soil passage. The findings from this study highlight the critical importance of implementing MAR techniques in regions facing water scarcity, emphasizing its potential to significantly enhance future water security initiatives.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , República da Coreia , Projetos Piloto , Fluorocarbonos/análise , Qualidade da Água , Purificação da Água/métodos
7.
J Environ Manage ; 362: 121233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833922

RESUMO

Managed aquifer recharge (MAR) has emerged as a potential solution to resolve water insecurity, globally. However, integrated studies quantifying the surplus source water, suitable recharge sites and safe recharge capacity is limited. In this study, a novel methodology is presented to quantify transient injection rates in unconfined aquifers and generate MAR suitability maps based on estimated surplus water and permissible aquifer recharge capacity (PARC). Subbasin scale monthly surplus surface runoff was estimated at 75% dependability using a SWAT model. A linear regression model based on numerical solution was used to capture the aquifer response to injection and to calculate PARC values at subbasin level. The available surplus runoff and PARC values was then used to determine the suitable site and recharge rate during MAR operation. The developed methodology was applied in the semi-arid region of Lower Betwa River Basin (LBRB), India. The estimated surplus runoff was generally confined to the monsoon months of June to September and exhibited spatial heterogeneity with an average runoff rate of 5000 m3/d in 85% of the LBRB. Analysis of the PARC results revealed that thick alluvial aquifers had large permissible storage capacity and about 50% of the LBRB was capable of storing over 3500 m3/d of water. This study revealed that sufficient surplus runoff was generated in the LBRB, but it lacked the adequate safe aquifer storage capacity to conserve it. A total 65 subbasins was identified as the best suited sites for MAR which had enough surplus water and storage capacity to suffice 20% of the total water demand in the LBRB. The developed methodology was computationally efficient, could augment the field problem of determining scheduled recharge rates and could be used as a decision-making tool in artificial recharge projects.


Assuntos
Água Subterrânea , Abastecimento de Água , Modelos Teóricos , Índia , Rios
8.
Environ Sci Pollut Res Int ; 31(27): 39794-39822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833051

RESUMO

Groundwater resources worldwide face significant challenges that require urgent implementation of sustainable measures for effective long-term management. Managed aquifer recharge (MAR) is regarded as one of the most promising management technologies to address the degradation of groundwater resources. However, in urban aquifers, locating suitable areas that are least vulnerable to contamination for MAR implementation is complex and challenging. Hence, the present study proposes a framework encapsulating the combined assessment of groundwater vulnerability and MAR site suitability analysis to pinpoint the most featured areas for installing drywells in Kayseri, Turkey. To extrapolate the vulnerable zones, not only the original DRASTIC but also its multi-criteria decision-making (MCDA)-based modified variants were evaluated with regard to different hydrochemical parameters using the area under the receiver operating characteristic (ROC) curve (AUC). Besides, the fuzzy analytical hierarchy process (FAHP) rationale was adopted to signify the importance level of criteria and the robustness of the framework was highlighted with sensitivity analysis. In addition, the decision layers and the attained vulnerability layer were combined using the weighted overlay (WOA). The findings indicate that the DRASTIC-SWARA correlates well with the arsenic (AUC = 0.856) and chloride (AUC = 0.648) and was adopted as the vulnerability model. Groundwater quality parameters such as chloride and sodium adsorption ratio, as well as the vadose zone thickness, were found to be the most significant decision parameters with importance levels of 16.75%, 14.51%, and 15.73%, respectively. Overall, 28.24% of the study area was unsuitable for recharge activities with high to very high vulnerability, while the remaining part was further prioritized into low to high suitability classes for MAR application. The proposed framework offers valuable tool to decision-makers for the delineation of favorable MAR sites with minimized susceptibility to contamination.


Assuntos
Tomada de Decisões , Sistemas de Informação Geográfica , Água Subterrânea , Água Subterrânea/química , Turquia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 58(17): 7567-7576, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624010

RESUMO

Managed aquifer recharge (MAR) is an increasingly used water management technique that enhances water availability while commonly generating water quality benefits. However, MAR activities may also trigger adverse geochemical reactions, especially during the injection of oxidant-enriched waters into reducing aquifers. Where this occurs, the environmental risks and the viability of mitigating them must be well understood. Here, we develop a rigorous approach for assessing and managing the risks from MAR-induced metal mobilization. First, we develop a process-based reactive transport model to identify and quantify the main hydrogeochemical drivers that control the release of metals and their mobility. We then apply a probabilistic framework to interrogate the inherent uncertainty associated with adjustable model parameters and consider this uncertainty (i) in long-term predictions of groundwater quality changes and (ii) in scenarios that investigate the effectiveness of modifications in the water treatment process to mitigate metal release and mobility. The results suggested that Co, Ni, Zn, and Mn were comobilized during pyrite oxidation and that metal mobility was controlled (i) by the sediment pH buffering capacity and (ii) by the sorption capacity of the native aquifer sediments. Both tested mitigation strategies were shown to be effective at reducing the risk of elevated metal concentrations.


Assuntos
Água Subterrânea , Níquel , Poluentes Químicos da Água , Água Subterrânea/química , Cobalto
10.
Environ Sci Technol ; 58(12): 5472-5482, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466321

RESUMO

The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.


Assuntos
Solo , Poluentes Químicos da Água , Porosidade , Protetores Solares/análise , Benzofenonas/química , Água/química , Poluentes Químicos da Água/análise
11.
Water Res ; 252: 121183, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301524

RESUMO

In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.


Assuntos
Água Subterrânea , Poços de Água , Abastecimento de Água , Água , Água Doce
12.
Environ Res ; 248: 118277, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266895

RESUMO

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.


Assuntos
Antibacterianos , Água Subterrânea , Humanos , Antibacterianos/farmacologia , Elétrons , Bactérias , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Oxigênio , Água Subterrânea/microbiologia
13.
J Hazard Mater ; 465: 133377, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237439

RESUMO

The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Peixe-Zebra , Solo , Poluentes Químicos da Água/análise , Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
14.
J Environ Manage ; 351: 119639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056326

RESUMO

Managed aquifer recharge (MAR) offers a potential innovative solution for addressing groundwater resource issues, enabling excess surface water to be stored underground for later abstraction. Given its favourable hydrogeological properties, the Pliocene sand and gravel (Crag) aquifer in Suffolk, UK, was selected for a demonstration MAR scheme, with the goal of supplying additional summer irrigation water. The recharge source was a 4.6 km drainage channel that discharges to the River Deben estuary. Trialling the scheme in June 2022, 12,262 m3 of source water were recharged to the aquifer over 12 days via a lagoon and an array of 565 m of buried slotted pipes. Groundwater levels were raised by 0.3 m at the centre of the recharge mound with an approximate radius of 250 m, with no detrimental impact on local water features observed. The source water quality remained stable during the trial with a mean chloride concentration (133 mg L-1) below the regulatory requirement (165 mg L-1). The fraction of recharge water mixing with the groundwater ranged from 69% close to the centre and 5% at the boundary of the recharge mound, leading to a reduction in nitrate-N concentration of 23.6 mg L-1 at the centre of the mound. During July-September 2022, 12,301 m3 of recharge water were abstracted from two, 18 m boreholes to supplement surface irrigation reservoirs during drought conditions. However, the hydraulic conductivity of the Crag aquifer (∼10 m day-1) restricted the yield and thereby reduced the economic viability of the scheme. Construction costs for the MAR system were comparatively low but the high costs of data collection and securing regulatory permits brought the overall capital costs to within 18% of an equivalent surface storage reservoir, demonstrating that market-based mechanisms and more streamlined regulatory processes are required to incentivise similar MAR schemes.


Assuntos
Água Subterrânea , Recursos Hídricos , Areia , Abastecimento de Água , Reino Unido
15.
J Hazard Mater ; 465: 133238, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134694

RESUMO

The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO3--N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Bactérias , Antibacterianos , Resistência Microbiana a Medicamentos
16.
Water Res ; 247: 120748, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976626

RESUMO

Microbial transport in fractured carbonate rock using enhanced solutions is a significant and neglected research topic in the literature. We propose an extended colloid filtration theory (CFT) combined with a particle-tracking following streamlines (PTFS) model for the rapid prediction of breakthrough curves (BTCs) and plumes of pathogens in three-dimensional (3-D) discrete fracture networks (DFNs). We adapted CFT in porous media to pathogen transport in fractures containing Terra Rossa (soil) deposits. As an example of the model capability, a simulation was used to predict the 3-D motion field and Escherichia coli count in groundwater originating from the Forcatella managed aquifer recharge (MAR) Facility (Brindisi, Italy) using a DFN composed of 3,900 fractures. In arid regions, MAR facilities are significant for sustaining basic human needs, such as freshwater supply for drinking and crop production. The Markov chain Monte Carlo (MCMC) technique was applied to E. coli counts in the collected water samples to increase data representativeness. The pathogen transport coefficients were further supported by batch filtration tests carried out in the CNR/IRSA Laboratory (Bari, Italy). The mean E. coli attachment rate coefficient of 0.15 × 10-8 m2 d-1 (sticking efficiency = 1.1 × 10-8 m) resulted in a 2.1 log10 removal in 600 m of reclaimed water filtration. The simulation output visualized the E. coli 3-D pathways in groundwater and the positions of contaminated groundwater spring outflows on Forcatella Beach. The simulation results agreed with the mean MCMC output of E. coli concentrations in bathing water under unperturbed geochemical and environmental flow and transport conditions. However, results indicate that concentrations of pathogenic strains, parasites, and enteric viruses may enter the marine environment of MAR sites during flood periods.


Assuntos
Escherichia coli , Água Subterrânea , Humanos , Água Subterrânea/química , Água , Coloides , Filtração
17.
Sci Total Environ ; 901: 166181, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572894

RESUMO

Agricultural aquifer storage recovery and transfer (ASTR) stores excess fresh water for later reuse in irrigation. Moreover, water quality improves because chemical pollutants and pathogens will be removed by degradation and attachment to the aquifer material. The source water may contain the bacterial plant pathogen Ralstonia solanacearum which causes plant infections and high yield losses. We used quantitative microbial risk assessment (QMRA) to investigate the removal of R. solanacearum during ASTR to predict infection risks of potato plants after irrigation with the recovered water. Laboratory experiments analyzed the ASTR treatment by investigating the bacterial die-off in the water phase and the removal by attachment to the aquifer sediment. Die-off in the water phase depends on the residence time and ranged between 1.3 and 2.7 log10 after 10 or 60 days water storage, respectively. A subpopulation of the bacteria persisted for a prolonged time at low concentrations which may pose a risk if the water is recovered too early. However, the natural aquifer sand filtration proofed to be highly effective in removing R. solanacearum by attachment which depends on the distance between injection and abstraction well. The high removal by attachment alone (18 log10 after 1 m) would reduce bacterial concentrations to negligible numbers. Upscaling to longer soil passages is discussed in the paper. Infection risks of potato plants were calculated using a dose-response model and ASTR treatment resulted in negligible infection risks of a single plant, but also when simulating the irrigation of a 5 ha potato field. This is the first QMRA that analyzed an agricultural ASTR and the fate of a plant pathogen focusing on plant health. QMRA is a useful (water) management tool to evaluate the treatment steps of water reclamation technologies with the aim to provide safe irrigation water and reduce risks disseminating plant diseases.

18.
Environ Monit Assess ; 195(8): 1014, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526743

RESUMO

Managed aquifer recharge (MAR) is a promising adaptation measure to reduce vulnerability to climate change and hydrological variability. However, in areas where the basin is highly polluted, densely populated, and intensely cultivated, implementing suitable MAR strategies is a significant challenge. This study used a geographic information system-based multicriteria decision analysis (GIS-MCDA) approach to delineate the MAR potential sites using seven thematic layers describing surface and subsurface features. Further, basin-specific MAR approach was developed using information such as polluted water areas, canal network distribution for water supply, and cropping patterns. The results of this study indicate that only 17% of the area is highly suitable, while 54% and 29% were found moderately suitable and unsuitable for the MAR approach. Since most highly and moderately suitable sites were falling in the agricultural areas, agricultural-based MAR (AgMAR) was considered a preferred option. AquaCrop model for sugarcane was developed considering excess canal water supply during the grand growth stage to understand the AgMAR potential in the study area. It was observed that the potential recharge under normal irrigation scenarios varies from 135.5 to 272 mm/year, which can be increased through AgMAR up to 545 mm/year depending on the water availability for excess irrigations. This study provides an improved understanding of the parameters that should be considered for MAR site selection and post-GIS-MCDA analysis to assess the basin-specific MAR strategy.


Assuntos
Água Subterrânea , Rios , Monitoramento Ambiental , Abastecimento de Água , Água
19.
Water Res ; 242: 120193, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327547

RESUMO

Frequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes. This study investigated influence of substrates and redox evolution along infiltration path on biotransformation of sulfonamides. Eight sand columns (length: 28 cm) with a riverbed sediment layer at 3-8 cm were fed by groundwater-sourced tap water spiked with 1 µg/L of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX) each, with or without amendments of dissolved organic carbon (5 mg-C/L of 1:1 yeast and humics) or ammonium (5 mg-N/L). Two flow rates were tested over 120 days (0.5 mL/min and 0.1 mL/min). Iron-reducing conditions persisted in all columns for 27 days during the initial high flow period due to respiration of sediment organics, evolving to less reducing conditions until the subsequent low flow period to resume more reducing conditions. With surplus substrates, the spatial and temporal patterns of redox conditions differentiated among columns. The removal of SDZ and SMZ in effluents was usually low (15 ± 11%) even with carbon addition (14 ± 9%), increasing to 33 ± 23% with ammonium addition. By contrast, SMX removal was higher and more consistent among columns (46 ± 21%), with the maximum of 64 ± 9% under iron-reducing conditions. When sulfonamide removal was compared between columns for the same redox zones during infiltration, their enhancements were always associated with the availability of dissolved or particulate substrates, suggesting co-metabolism. Manipulation of the exposure time to optimal redox conditions with substrate amendments, rather than to simply prolong the overall residence time, is recommended for nature-based solutions to tackle target antibiotics.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Reprodutibilidade dos Testes , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/análise , Sulfanilamida , Sulfonamidas , Sulfametoxazol , Sulfadiazina , Ferro
20.
Environ Res ; 232: 116354, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295590

RESUMO

Managed aquifer recharge (MAR) systems can be operated intermittently through wetting-drying cycles to simultaneously improve the water supply and quality. Although MAR can naturally attenuate considerable amounts of nitrogen, the dynamic processes and control mechanisms of nitrogen removal by intermittent MAR remain unclear. This study was conducted in laboratory sandy columns and lasted for 23 d, including four wetting periods and three drying periods. The hydraulic conductivity, oxidation reduction potential (ORP), and leaching concentrations of ammonia nitrogen and nitrate nitrogen of MAR systems were intensively measured to test the hypothesis that hydrological and biogeochemical controls play an essential role in regulating nitrogen dynamics at different stages of wetting-drying cycles. Intermittent MAR functioned as a sink for nitrogen while providing a carbon source to support nitrogen transformations; however, it occasionally became a source of nitrogen under intense flushes of preferential flow. Nitrogen dynamics were primarily controlled by hydrological processes in the initial wetting phase and were further regulated by biogeochemical processes during the subsequent wetting period, supporting our hypothesis. We also observed that a saturated zone could mediate nitrogen dynamics by creating anaerobic conditions for denitrification and buffering the flush effect of preferential flow. The drying duration can also affect the occurrence of preferential flow and nitrogen transformations, which should be balanced when determining the optimal drying duration for intermittent MAR systems.


Assuntos
Desnitrificação , Água Subterrânea , Nitrogênio , Nitratos , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA