Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999590

RESUMO

Due to global warming and increased human activity, the wild population of Thuja koraiensis Nakai (T. koraiensis) has dropped, placing it in danger. An understanding of the response of T. koraiensis to climate change and the determination of priority conservation areas are tremendously critical for proper conservation. Using sixty-nine T. koraiensis distribution points and seven environmental factors, the Maxent model was used to predict potentially suitable areas and spatial variation patterns of T. koraiensis and the Marxan conservation planning model was used to evaluate conservation gap areas. Research shows that the dominant environmental factors affecting the distribution of potentially suitable areas for T. koraiensis included elevation, precipitation of the driest month, isothermality and precipitation of the wettest quarter. Under the current climatic conditions, highly suitable areas for T. koraiensis are mainly distributed in the Changbai Mountains within Samjiyon County and Baishan City, the Hamgyong Mountains within the western part of Hamgyong-Bukto Province, and the T'aeback-Sanmaek Mountains within Gangwon-do, Kumgangsan Special Administrative Region and Kangwon-do. Under future climate conditions, suitable areas for T. koraiensis show a decreasing trend, and the suitable area will be reduced to higher elevations, and the Hamgyong Mountains may become a refuge. Based on GAP analysis, 69.69% of the priority conservation areas of T. koraiensis are located outside of the nature reserve, and these conservation gap areas are primarily in the southern part of the Changbai Mountains and Kangwon-do.

2.
Front Plant Sci ; 15: 1365264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559765

RESUMO

Introduction: Tilia amurensis Rupr (T. amurensis) is one endangered and national class II key protected wild plant in China. It has ornamental, material, economic, edible and medicinal values. At present, the resources of T. amurensis are decreasing, and the prediction of the distribution of its potential habitat in China can provide a theoretical basis for the cultivation and rational management of this species. Methods: In this study, the R language was used to evaluate 358 distribution records and 38 environment variables. The MaxEnt model was used to predict the potential distribution areas of T. amurensis under the current and future climate scenarios. The dominant environmental factors affecting the distribution of T. amurensis were analyzed and the Marxan model was used to plan the priority protected areas of this species. Results: The results showed that Bio18, Slope, Elev, Bio1, Bio9 and Bio2 were the dominant environmental factors affecting the distribution of T. amurensis. Under the future climatic scenarios, the potential suitable areas for T. amurensis will mainly distribute in the Northeast China, the total suitable area will reduce compared with the current climate scenarios, and the general trend of the centroid of suitable habitat will be towards higher latitudes. The SPF value of the best plan obtained from the priority conservation area planning was 1.1, the BLM value was 127,616, and the priority conservation area was about 57.61×104 km2. The results suggested that climate, soil and topographic factors jointly affected the potential geographical distribution of T. amurensis, and climate and topographic factors had greater influence than soil factors. Discussion: The total suitable area of T. amurensis in China under different climate scenarios in the future will decrease, so more effective protection should be actively adopted.

3.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592903

RESUMO

Cupressus gigantea (C. gigantea) is an endemic endangered species on the Tibetan Plateau; its potential suitable areas and priority protection in the context of global climate change remain poorly predicted. This study utilized Biomod2 and Marxan to assess the potential suitable areas and priority protection for C. gigantea. Our study revealed that the suitable areas of C. gigantea were concentrated in the southeastern Tibetan Plateau, with the center in Lang County. Temperature was identified as a crucial environmental factor influencing the distribution of C. gigantea. Over the coming decades, the suitable range of C. gigantea expanded modestly, while its overall distribution remained relatively stable. Moreover, the center of the highly suitable areas tended to migrate towards Milin County in the northeast. Presently, significant areas for improvement are needed to establish protected areas for C. gigantea. The most feasible priority protected areas were located between the Lang and Milin counties in Tibet, which have more concentrated and undisturbed habitats. These results provide scientific guidance for the conservation and planning of C. gigantea, contributing to the stability and sustainability of ecosystems.

4.
Front Plant Sci ; 15: 1304121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486852

RESUMO

Chionanthus retusus (C. retusus) has a high economic and medicinal value, but in recent years it has been included in the list of China's major protected plants and China's Red List of Biodiversity due to the serious destruction of its wild germplasm resources. Based on 131 sample points of C. retusus, this study simulated potential habitats and spatial changes of C. retusus in the 21st century using the Maxent model combined with the geographic information system ArcGIS, predicted prioritized protected areas by the Marxan model, and assessed current conservation status through GAP analysis. The results showed that (1) when the regularization multiplier was 1.5 and the feature combinations were linear, quadratic, and fragmented, the area under the curve of the subjects in the training and test sets were both above 0.9, the true skill statistic value was 0.80, and the maximum Kappa value was 0.62, meaning that the model had high accuracy; (2) Temperature seasonality, annual precipitation, min temperature for coldest month, and precipitation of wettest month had relatively strong influences on species' ranges. (3) The moderately and optimally suitable habitats of C. retusus were primly located in the areas of southwestern Shanxi, central Hebei, western Henan, Shandong, Shaanxi, Anhui and Hubei; (4) Under different future climate scenarios, the area of each class of suitable habitat will increase for varied amounts compared to the current period, with a general trend of expansion to the south; (5) The C. retusus priority protected areas were mainly located in most of Shandong, southern Liaoning, southwestern Shanxi, western Henan, and central Hebei, and its conservation vacancy area was relatively large compared to its protected area. These results will provide scientific strategies for implementing long-term conservation of C. retusus in China and similar regions under warming conditions in the 21st century.

5.
Front Plant Sci ; 14: 1200796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554556

RESUMO

Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been widely studied because of its high medicinal and edible value. Establishing the priority protected area of wild A. rugosa can provide scientific basis for the protection of germplasm resources. In this study, we predicted the potential suitability distribution area of A. rugosa under the current and future climate scenarios with the MaxEnt model, and the dominant climate factors affecting the distribution of A. rugosa were analyzed. Based on the above results, we predicted the priority protected areas of A. rugosa with the Marxan model. The results showed that A. rugosa is mainly distributed in the eastern and central regions of China at present. In future, the suitable area of A. rugosa will increase, otherwise a few areas will shrink back and migrate to the high latitude areas as a whole. Hydrothermal conditions are the main environmental factors affecting the distribution of A. rugosa. The priority protected areas of A. rugosa are mainly distributed in Chongqing, eastern Sichuan, southern Guizhou, western Hunan and Hubei and southwestern Shaanxi, which are basically consistent with the highly suitable areas predicted by Maxent model. The results of this study are of great significance for the protection and rational utilization of species of Agastache.

6.
J Environ Manage ; 340: 117972, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126921

RESUMO

The degradation of ecosystems and their services is threatening human wellbeing, making ecosystem service (ES) conservation an urgent necessity. In ES conservation planning, conservation area identification is crucial for the success of conservation initiatives. However, different decision-making preferences have not been fully considered and integrated in ES conservation area identification. This study takes the Dawen River watershed as the study area and considers three water-related ESs to be conserved. We aim to integrate the decision-making preferences of cost-effectiveness, ES sustainable supply, and ES social benefit into identifying ES conservation areas by using conservation cost, ecosystem health, and ES social importance as spatial constraints, respectively. We identified ES conservation area alternatives under the scenarios set according to different decision-making preferences. Specifically, ES conservation targets, i.e., the expected proportion of each ES in conservation areas, are designed to be met where there is low conservation cost (cost-oriented scenario), high ecosystem health (ES sustainable supply scenario), or high ES social importance (ES social benefit scenario). A balanced scenario considering all three decision-making preferences together is further established. The results show that under each scenario, the identified conservation areas can concurrently meet the conservation targets and decision-making preferences. The consideration of different decision-making preferences can greatly influence the spatial distributions of ES conservation areas. Moreover, a severe trade-off between conservation cost and ES social importance is observed under the ES social benefit scenario, and the balanced scenario can achieve a synergy of decision-making preferences. Our study provides a method to integrate the decision-making preference into ES conservation area identification, which can improve the rationality and practicality of ES conservation planning.


Assuntos
Ecossistema , Rios , Humanos , Água , Conservação dos Recursos Naturais/métodos , China
7.
Front Plant Sci ; 14: 1177307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229107

RESUMO

Larix gmelinii (Rupr.) Kuzen is a major tree species with high economic and ecological value in the Greater Khingan Mountains coniferous forest of Northeast China. Reconstructing the priority Conservation Area of Larix gmelinii under Climate could provide a scientific basis for its germplasm conservation and management. The present study used ensemble and Marxan model simulations to predict species distribution areas and delineate priority conservation areas for Larix gmelinii in relation to productivity characteristics, understory plant diversity characteristics, and climate change impacts. The study revealed that the Greater Khingan Mountains and the Xiaoxing'an Mountains, with an area of approximately 300 974.2 km2, were the most suitable for L. gmelinii. The stand productivity of L. gmelinii in the most suitable area was significantly higher than that in the less suitable and marginally suitable areas, but understory plant diversity was not dominant. The increase in temperature under future climate change scenarios will reduce the potential distribution and area under L. gmelinii; the species will migrate to higher latitudes of the Greater Khingan Mountains, while the degree of niche migration will gradually increase. Under the 2090s-SSP585 climate scenario, the most suitable area for L. gmelinii will completely disappear, and the climate model niche will be completely separated. Therefore, the protected area of L. gmelinii was demarcated with a target of the productivity characteristics, understory plant diversity characteristics and climate change sensitive area, and the current key protected area was 8.38 × 104 km2. Overall, the study's findings will lay a foundation for the protection and rational development and utilization of cold temperate coniferous forests dominated by L. gmelinii in the northern forested region of the Greater Khingan Mountains.

8.
Ecol Appl ; 33(4): e2852, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946332

RESUMO

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.


Assuntos
Conservação dos Recursos Naturais , Água do Mar , Conservação dos Recursos Naturais/métodos , Concentração de Íons de Hidrogênio , Biodiversidade , Incerteza , Mudança Climática , Ecossistema
9.
J Environ Manage ; 331: 117186, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696758

RESUMO

Family-level identification of freshwater macroinvertebrates is often used to monitor the health of streams due to the lower cost and higher accuracy of identification compared to identifying species. While data on the presence of families from stream monitoring programs can also be used for biodiversity conservation planning, the ability of family-level datasets to accurately reflect regional biodiversity patterns for freshwater macroinvertebrates in Australia remains untested. This study compares family-level and species-level datasets for freshwater insects identified using morphological features and collected over 16 years from 140 sites in Greater Melbourne, Australia. Similar to the results of other studies, our results show a strong positive relationship between family- and species-level taxon richness. However, using the planning software Marxan to compare conservation priorities in our study region, we found that a data analysis of the family-level dataset underestimated the minimum sampling effort required to accurately reflect species diversity. It also identified sub-optimal conservation priority sites and overlooked regionally rare species. We recommend that aquatic macroinvertebrate monitoring programs aimed at understanding regional biodiversity patterns and conservation priorities should routinely include species-level identification, which is now becoming feasible with advances in molecular methods.


Assuntos
Biodiversidade , Rios , Humanos , Animais , Água Doce , Austrália , Ecossistema , Conservação dos Recursos Naturais , Invertebrados
10.
J Environ Manage ; 326(Pt A): 116834, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436438

RESUMO

The process of site selection and spatial planning has received scarce attention in the scientific literature dealing with marine restoration, suggesting the need to better address how spatial planning tools could guide restoration interventions. In this study, for the first time, the consequences of adopting different restoration targets and criteria on spatial restoration prioritization have been assessed at a regional scale, including the consideration of climate changes. We applied the decision-support tool Marxan, widely used in systematic conservation planning on Mediterranean macroalgal forests. The loss of this habitat has been largely documented, with limited evidences of natural recovery. Spatial priorities were identified under six planning scenarios, considering three main restoration targets to reflect the objectives of the EU Biodiversity Strategy for 2030. Results show that the number of suitable sites for restoration is very limited at basin scale, and targets are only achieved when the recovery of 10% of regressing and extinct macroalgal forests is planned. Increasing targets translates into including unsuitable areas for restoration in Marxan solutions, amplifying the risk of ineffective interventions. Our analysis supports macroalgal forests restoration and provides guiding principles and criteria to strengthen the effectiveness of restoration actions across habitats. The constraints in finding suitable areas for restoration are discussed, and recommendations to guide planning to support future restoration interventions are also included.


Assuntos
Mudança Climática , Florestas , Biodiversidade
11.
Conserv Biol ; 37(3): e14038, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36478610

RESUMO

Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.


Integración de la conectividad larval al proceso de toma de decisiones en la conservación marina en escalas espaciales Resumen Comúnmente se integra la conectividad de la dispersión larval a las decisiones de conservación espacial a escalas regionales o nacionales, pero las agencias de implementación luchan con la transferencia de estos métodos a las escalas locales. Usamos la conectividad de la dispersión larval a escalas regionales (cientos de kilómetros) y locales (decenas de kilómetros) para ayudar en el diseño de redes de reservas con protección total en Sulawesi Sudoriental, Indonesia. Usamos Marxan con la conectividad guiada por los modelos biofísicos de dispersión larval y detectamos a distancia los datos de hábitat de los arrecifes de coral para diseñar redes de reservas marinas para cuatro especies de importancia comercial en la región. Complementamos la priorización espacial regional con árboles de decisión que combinaron medidas de conectividad basadas en las redes y la calidad del hábitat para diseñar localmente los límites de la reserva. Usamos los árboles de decisión con los actores en talleres basados en el consenso para evaluar cualitativamente la conveniencia del sitio. También usamos Marxan para identificar áreas para la expansión subsecuente de la red. Las áreas prioritarias para la protección y los beneficios esperados difirieron entre especies, con un traslape reducido en las soluciones de la red de reservas. Ya que la calidad del arrecife varió considerablemente entre los arrecifes, sugerimos que la degradación de estos debe orientar la interpretación de los patrones de dispersión larval y los beneficios de conservación alcanzables con la protección de los arrecifes. Los practicantes de la conservación pueden aplicar nuestros métodos inmediatamente, en esta región o en cualquier otra, para integrar los datos de conectividad en varias escalas espaciales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Larva , Recifes de Corais , Indonésia
12.
Environ Sci Pollut Res Int ; 30(13): 36573-36587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36550250

RESUMO

In order to reverse the trend of ecological deterioration and resolve the conflict between ecological conservation and economic development, it is necessary to evaluate the trends of ecosystem services (ESs) and unravel the relationship between ESs and environmental drivers and identify the priority areas for ESs. In this research, we used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to quantify the variation of four important ESs (water purification, water yield, soil conservation, and habitat quality) in the Dongting Lake Basin from 2000 to 2015. During the past 15 years, water yield was declined by 3.38% and soil conservation was increased by 1.45%. Water quality purification was deteriorated with the rise in phosphorus export (5.32%) and nitrogen export (4.09%). Meanwhile, habitat quality was decreased by 3.27%. Trade-offs occurred primarily among water yield and other ESs. Social-ecological drivers importance analysis found that water yield was primarily influenced by precipitation and temperature. By contrast, water purification and habitat quality were more affected by the distribution of land use and land cover (LULC). Soil conservation was closely related to precipitation and geographical factor. Based on the distribution of ESs and the intensity of human activities, we delineated priority areas for each ESs using the systematic conservation planning tool (Marxan). LULC shifted most dramatically in water yield reserves (6.49%) with a large amount of lands conversed to cropland (4.4%) and build-up land (0.27%), which further increased the risk of water scarcity, while LULC changed less in other ESs priority areas due to human activities. Our study helps develop conservation strategies within specific area cost-effectively and provides scientific support for future conservation program of ESs formulation and adjustment.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Qualidade da Água , Lagos , Solo , China
13.
Sci Total Environ ; 864: 161073, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572307

RESUMO

Information about biotic interactions (e.g. competition, predation, parasitism, diseases, mutualism, allelopathy) is fundamental to better understand species distribution and abundance, ecosystem functioning, and ultimately guide conservation efforts. However, conservation planning often overlooks these important interactions. Here, we aim to demonstrate a new framework to include biotic interactions into Marxan. For that, we use freshwater mussels and fish interaction (as mussels rely on fishes to complete their life cycle) in the Douro River basin (Iberian Peninsula) as a case study. While doing that, we also test the importance of including biotic interactions into conservation planning exercises, by running spatial prioritisation analysis considering either: 1) only the target species (freshwater mussels); 2) freshwater mussels and their obligatory hosts (freshwater fishes); 3) freshwater mussels, fishes and their interactions. With this framework we found that biotic interactions tend to be underrepresented when the data on both freshwater mussels and fishes is not simultaneously included in the spatial prioritisation. Overall, the priority areas selected across all scenarios are mostly located in the western part of the Douro River basin, where most freshwater mussels and fishes still occur. Given the low overlap of priority areas identified here and the current Natura 2000 network, our approach may be useful for establishing (or enlarging) protected areas, especially in light of the EU Biodiversity Strategy for 2030. Also, this work may provide guidance for future habitat restoration and management of main threats to freshwater biodiversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Água Doce , Rios , Peixes
14.
Conserv Biol ; 37(2): e14008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178033

RESUMO

Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia.


La dispersión larval es un componente importante de las redes de reservas marinas. Existen dos estrategias conceptualmente distintas para incorporar la conectividad de la dispersión en la planeación espacial de estas redes y es una pregunta abierta cuándo alguna de las dos es la más apropiada. Los sitios candidatos a reserva pueden ser seleccionados individualmente con base en las propiedades locales de la conectividad o en la estrategia espacial basada en la dependencia que consiste en seleccionar grupos de fragmentos de hábitat con un vínculo fuerte. La primera estrategia actúa sobre sitios individuales, mientras que la segunda actúa sobre pares de sitios vinculados. Usamos una combinación de simulaciones de dispersión larval que representaban a diferentes paisajes marinos y estudios de caso de modelos biofísicos de dispersión larval en la región del Triángulo de Coral y en la provincia de Sulawesi Sudoriental, Indonesia, para comparar el desempeño de estos dos métodos en el software de planeación espacial Marxan. Exploramos las implicaciones del desempeño del diseño de la reserva de diferentes distancias y patrones de dispersión basados en el establecimiento del equilibrio de larvas en las áreas protegidas y sin protección. Además, analizamos las suposiciones sobre las contribuciones metapoblacionales de las áreas sin protección, incluyendo el caso de la reducción al 100% y escenarios más moderados. El método de la dependencia espacial fue adecuado cuando la dispersión estuvo limitada, una proporción elevada del área de interés estaba sustancialmente degradada o era baja la cantidad meta de hábitat protegido. Al contrario, cuando las subpoblaciones estaban bien conectadas, la reducción al 100% estuvo relajada, o si una mayor parte del hábitat estaba protegido, la protección de los sitios individuales con altos puntajes en las medidas de conectividad fue una mejor estrategia. Los métodos de dependencia espacial generalmente produjeron soluciones con una agrupación más espacial y con más beneficios dentro que fuera de las reservas en comparación con los métodos basados sitios. Por lo tanto, los métodos de dependencia espacial tienen el potencial de proporcionar mejores resultados para los objetivos de persistencia ecológica por encima de los objetivos de mejora de las pesquerías, y viceversa. Los diferentes métodos de priorización espacial que usan la conectividad son apropiados para contextos diferentes, dependiendo de las características de dispersión, las contribuciones del área sin protección, las metas de protección del hábitat y los objetivos específicos del manejo.


Assuntos
Conservação dos Recursos Naturais , Peixes , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Larva
15.
Artigo em Inglês | MEDLINE | ID: mdl-36429437

RESUMO

Appropriate prioritisation of geographic target regions (TRs) for healthcare interventions is critical to ensure the efficient distribution of finite healthcare resources. In delineating TRs, both 'targeting efficiency', i.e., the return on intervention investment, and logistical factors, e.g., the number of TRs, are important. However, existing approaches to delineate TRs disproportionately prioritise targeting efficiency. To address this, we explored the utility of a method found within conservation planning: the software Marxan and an extension, MinPatch ('Marxan + MinPatch'), with comparison to a new method we introduce: the Spatial Targeting Algorithm (STA). Using both simulated and real-world data, we demonstrate superior performance of the STA over Marxan + MinPatch, both with respect to targeting efficiency and with respect to adequate consideration of logistical factors. For example, by design, and unlike Marxan + MinPatch, the STA allows for user-specification of a desired number of TRs. More broadly, we find that, while Marxan + MinPatch does consider logistical factors, it also suffers from several limitations, including, but not limited to, the requirement to apply two separate software tools, which is burdensome. Given these results, we suggest that the STA could reasonably be applied to help prevent inefficiencies arising due to targeting of interventions using currently available approaches.


Assuntos
Conservação dos Recursos Naturais , Instalações de Saúde , Conservação dos Recursos Naturais/métodos , Atenção à Saúde
16.
Conserv Biol ; 36(6): e13982, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35946319

RESUMO

River conservation efforts traditionally focus on perennial watercourses (i.e., those that do not dry) and their associated aquatic biodiversity. However, most of the global river network is not perennial and thus supports both aquatic and terrestrial biodiversity. We assessed the conservation value of nonperennial rivers and streams (NPRS) in one of Europe's driest regions based on aquatic (macroinvertebrates, diatoms) and terrestrial (riparian plants, birds, and carabid beetles) community data. We mapped the distribution of taxa at 90 locations and across wide environmental gradients. Using the systematic planning tool Marxan, we identified priority conservation sites under 2 scenarios: aquatic taxa alone or aquatic and terrestrial taxa together. We explored how environmental factors (runoff, flow intermittence, elevation, salinity, anthropogenic impact) influenced Marxan's site selection frequency. The NPRS were selected more frequently (over 13% on average) than perennial rivers when both aquatic and terrestrial taxa were considered, suggesting that NPRS have a high conservation value at the catchment scale. We detected an underrepresentation of terrestrial taxa (8.4-10.6% terrestrial vs. 0.5-1.1% aquatic taxa were unrepresented in most Marxan solutions) when priority sites were identified based exclusively on aquatic biodiversity, which points to a low surrogacy value of aquatic taxa for terrestrial taxa. Runoff explained site selection when focusing on aquatic taxa (all best-fitting models included runoff, r2  = 0.26-0.27), whereas elevation, salinity, and flow intermittence were more important when considering both groups. In both cases, site selection frequency declined as anthropogenic impact increased. Our results highlight the need to integrate terrestrial and aquatic communities when identifying priority areas for conservation in catchments with NPRS. This is key to overcoming drawbacks of traditional assessments based only on aquatic taxa and to ensure the conservation of NPRS, especially as NPRS become more prevalent worldwide due to climate change and increasing water demands.


Los esfuerzos de conservación fluvial se enfocan tradicionalmente en los cauces permanentes (aquellos que no se secan) y la biodiversidad acuática asociada. Sin embargo, la mayor parte de la red hidrográfica mundial no es permanente, por lo que sustenta biodiversidad tanto acuática como terrestre. Evaluamos el valor de conservación de los ríos y arroyos no permanentes (RANP) en una de las regiones más secas de Europa con datos de comunidades acuáticas (macroinvertebrados, diatomeas) y terrestres (escarabajos carábidos). Mapeamos la distribución de los taxones en 90 localidades que cubren gradientes ambientales amplios. Con la herramienta de planificación sistemática Marxan identificamos los sitios prioritarios de conservación bajo dos escenarios: considerando sólo los taxones acuáticos o los taxones acuáticos y terrestres juntos. Exploramos cómo los factores ambientales (escorrentía, intermitencia del caudal, altitud, salinidad, impacto antropogénico) influyeron sobre la frecuencia de selección de sitio de Marxan. Los RANP fueron seleccionados con mayor frecuencia (más del 13% en promedio) que los ríos permanentes cuando consideramos los taxones acuáticos y terrestres, lo que sugiere que los RANP tienen un valor elevado de conservación a escala de cuenca. Detectamos que los taxones terrestres estaban infrarrepresentados (8.4-10.6% taxones terrestres vs. 0.5-1.1% acuáticos no tuvieron representación en la mayoría de las soluciones de Marxan) cuando los sitios prioritarios para la conservación se identificaban exclusivamente con la biodiversidad acuática, lo que indica que los taxones acuáticos tienen un reducido valor indicador para los taxones terrestres. La escorrentía determinó la selección de sitios cuando se basó en los taxones acuáticos (los mejores modelos incluyeron la escorrentía, r2 = 0.26-0.27), mientras que la altitud, la salinidad y la intermitencia del caudal fueron más importantes cuando se consideraron ambos grupos. En ambos casos, la frecuencia de selección disminuyó conforme se incrementó el impacto antropogénico. Nuestros resultados resaltan la necesidad de integrar las comunidades terrestres y acuáticas a la identificación de las áreas prioritarias para la conservación de la biodiversidad en cuencas con RANP. Lo anterior es importante para superar las evaluaciones tradicionales basadas solamente en los taxones acuáticos y para garantizar la conservación de los RANP, especialmente ahora que estos son cada vez más frecuentes a nivel mundial debido al cambio climático y a la creciente demanda de agua.


Assuntos
Ecossistema , Rios , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Biodiversidade
17.
J Environ Manage ; 320: 115915, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952567

RESUMO

Conservation and restoration have long been regarded as two separate management avenues to maintain or enhance ecosystem functioning. Despite the commonalities in goals, restoration is generally considered a lower priority than conservation due to its generally greater cost, uncertainties in multiple trajectories and deals with already degraded habitats. However, when resources and opportunities for meeting conservation needs are limited, restoration could be an imperative avenue to provide additional benefits from conservation. The priority of conservation and restoration should be integrated based on an identical framework cost effectively to obtain the maximum ecological benefits with minimal costs. We propose a methodological framework to integrate conservation and restoration based on theories of Systematic Conservation Planning, which could identify best integrated conservation and restoration pattern in a cost-effective way on the basis of the provisions of multiple ecosystem services (i.e., carbon storage, water yield, soil retention and habitat quality). The trade-offs among four ecosystem services are assessed with an each of 10% increment in the target levels of ecosystem services. We demonstrated our approach at a regional scale, in the Dongting Lake Area, China. Our results showed that conservation is prioritized in a higher proportion of the study area when the targets are low. When the target level became higher, restoration gained more importance with growing area. This highlights that restoration pattern is indispensable when target setting become high and the integrated conservation and restoration planning is more cost efficient than that of conservation alone. Improving the carbon storage and soil retention would also contribute greatly to an increase in other ecosystems, but increasing the water yield and habitat quality would not guarantee an improvement for others. Integrated conservation and restoration planning will facilitate refine target achievement of conservation and restoration recommendations, by the trade-offs between conservation and restoration, and among different ecosystem services, our prioritization framework provides a useful insight in implementing the integrated planning, which can improve the efficiency in increasing ecosystem services compared to use either conservation or restoration ways.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Carbono , China , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Solo , Água
18.
Water Res ; 221: 118766, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759851

RESUMO

Water scarcity and quality deterioration often occur in economically developing regions, particularly during crises related to climate change or increasing human activities. The assignment of priority areas is considered a suitable strategy for stakeholders to mitigate water crises and cope with water stress. However, most studies focused on protecting water bodies in priority areas and did not consider the hydrological/hydrochemical/hydroecological interaction between aquatic and terrestrial ecosystems. We divided a watershed into manageable areas to select priority areas for multiple water-related ecosystem services (WES-priority areas), considering the aquatic-terrestrial interactions to predict the effects of climate change and human activities. The proposed novelty framework couples the soil and water assessment tool and maximum entropy models with a systematic conservation planning tool. It uses the gross domestic product as the economic cost to assess dynamic changes and social-environmental driving forces. A case study is conducted in the Xiangjiang River basin, a modified watershed of the main tributary of the Yangtze River, China. Results revealed that most of the WES-priority areas were located in the southern and southeastern regions of the upper reaches in all climatic scenarios. The conservation efficiency of the WES-priority areas decreased from 1.264 to 0.867 in 50 years, indicating that the level of protection declined as climate change accelerated. The precipitation was positively correlated with the WES-priority area selection in all climate scenarios. The temperature was only negatively correlated with the WES-priority areas when it exceeded 20 °C, and this effect became more pronounced as the temperature increased. The topographic factors had the most crucial impacts on the upstream priority areas selection. The water flow regulation service played a leading role in identifying WES-priority areas in the middle reaches because the priority areas' distribution here was closely related to the water yield, and its proportion decreased with the acceleration of global warming. The number of WES-priority areas was relatively low in the lower reaches. It was positively associated with the gross domestic product and the amount of built-up land. The proposed framework for WES-priority areas identification enables a sound trade-off between environmental protection and economic development.


Assuntos
Mudança Climática , Ecossistema , China , Conservação dos Recursos Naturais/métodos , Hidrologia , Rios
19.
Nat Sustain ; 5(5): 415-424, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35614933

RESUMO

Over a million species face extinction, urging the need for conservation policies that maximize the protection of biodiversity to sustain its manifold contributions to people. Here we present a novel framework for spatial conservation prioritization based on reinforcement learning that consistently outperforms available state-of-the-art software using simulated and empirical data. Our methodology, CAPTAIN (Conservation Area Prioritization Through Artificial INtelligence), quantifies the trade-off between the costs and benefits of area and biodiversity protection, allowing the exploration of multiple biodiversity metrics. Under a limited budget, our model protects substantially more species from extinction than areas selected randomly or naively (such as based on species richness). CAPTAIN achieves substantially better solutions with empirical data than alternative software, meeting conservation targets more reliably and generating more interpretable prioritization maps. Regular biodiversity monitoring, even with a degree of inaccuracy characteristic of citizen science surveys, substantially improves biodiversity outcomes. Artificial intelligence holds great promise for improving the conservation and sustainable use of biological and ecosystem values in a rapidly changing and resourcelimited world.

20.
Mar Pollut Bull ; 176: 113472, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35219077

RESUMO

Oyster farming for black pearl production is central in French Polynesia. It is the second source of national income and provides substantial job opportunities, notably in remote atolls. However, this sector has been undermined by successive crises, such as mass-mortalities of wild and farmed oyster stocks that have impacted entire lagoons. An option to revive the activity consists of reintroducing oysters in strategic benthic locations selected to maximize reproduction and dispersal of larvae throughout the lagoon, hence promoting recolonization and spat collection for farming. For Takaroa, a Tuamotu atoll recently impacted by mortalities, a systematic prioritization approach identified these restocking sites, using environmental and socio-economic criteria such as: location of suitable habitats for oyster settlement, larval connectivity estimated from hydrodynamic circulation model, farming waste accumulation, and opportunity cost to fishers and farmers who lose access to restocking areas. This approach provides managers with a portfolio of restocking options.


Assuntos
Pinctada , Agricultura , Animais , Aquicultura , Ecossistema , Hidrodinâmica , Polinésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA