Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant J ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074058

RESUMO

The protein levels of chloroplast photosynthetic genes and genes related to the chloroplast genetic apparatus vary to adapt to different conditions. However, the underlying mechanisms governing these variations remain unclear. The chloroplast intron Maturase K is encoded within the trnK intron and has been suggested to be required for splicing several group IIA introns, including the trnK intron. In this study, we used RNA immunoprecipitation followed by high-throughput sequencing (RIP-Seq) to identify MatK's preference for binding to group IIA intron domains I and VI within target transcripts. Importantly, these domains are crucial for splice site selection, and we discovered alternative 5'-splice sites in three MatK target introns. The resulting alternative trnK lariat structure showed increased accumulation during heat acclimation. The cognate codon of tRNA-K(UUU) is highly enriched in mRNAs encoding ribosomal proteins and a trnK-matK over-expressor exhibited elevated levels of the spliced tRNA-K(UUU). Ribosome profiling analysis of the overexpressor revealed a significant up-shift in the translation of ribosomal proteins compared to photosynthetic genes. Our findings suggest the existence of a novel regulatory mechanism linked to the abundance of tRNA-K(UUU), enabling the differential expression of functional chloroplast gene groups.

2.
Toxicon ; 243: 107714, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38626820

RESUMO

The present work is carried out to protein isolation, purification, and characterization from leaves, stem, and seed of C. procera and to evaluate the larvicidal potential on Anopheles stephensi. The whole protein was isolated using protein extraction buffer and precipitated by ammonium sulphate and larvicidal active protein was purified by the column chromatography. The homogeneity of larvicidal protein was confirmed by the SDS-PAGE. The identification of protein was done by the HPLC and LC-MS/ESI-MS. The crude protein from leaves showed 100% mortality of 3rd instar larvae of An. stephensi at the concentration of 5.5 mg/ml after 24 h of exposure. The crude protein from stem showed 25% mortality and no mortality observed was observed in seed protein. The leaves crude protein was further purified by ion exchange chromatography and eluted fractions were tested for larvicidal potential. The purified single protein fractions L2 and L3 from C. procera leaves showed 100% mortality at concentration of 0.06 mg/ml. The homogeneity of purified protein was confirmed by SDS-PAGE and two bands of 26 kDa and 15 kDa protein were observed. The peptide sequence "R.SQMLENSFLIENVMKR.L" was identified in the trypsin digested homogenous protein fraction L2 and "R.DRGSQKR.N" peptide sequence in L3 fraction by LC-MS/ESI-MS. The CprL2 peptide showed the sequence similarity with the protein maturase K and CprL3 peptide showed the sequence similarity with ribosomal protein L20 of C. procera. The conserved functional domain was also identified in both the CprL2 and CprL3 peptide. The identified proteins showed strong larvicidal efficacy at very low concentration. The identified proteins are novel and natural larvicidal agents against An. stephensi and hence can be used to control the malaria.


Assuntos
Anopheles , Inseticidas , Larva , Folhas de Planta , Anopheles/efeitos dos fármacos , Animais , Folhas de Planta/química , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Proteínas Ribossômicas , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Calotropis/química , Sequência de Aminoácidos
3.
Microb Cell Fact ; 22(1): 134, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479997

RESUMO

BACKGROUND: Hydrogenases (H2ases) are metalloenzymes capable of the reversible conversion of protons and electrons to molecular hydrogen. Exploiting the unique enzymatic activity of H2ases can lead to advancements in the process of biohydrogen evolution and green energy production. RESULTS: Here we created of a functional, optimized operon for rapid and robust production of recombinant [NiFe] Desulfomicrobium baculatum hydrogenase (Dmb H2ase). The conversion of the [NiFeSe] Dmb H2ase to [NiFe] type was performed on genetic level by site-directed mutagenesis. The native dmb operon includes two structural H2ase genes, coding for large and small subunits, and an additional gene, encoding a specific maturase (protease) that is essential for the proper maturation of the enzyme. Dmb, like all H2ases, needs intricate bio-production machinery to incorporate its crucial inorganic ligands and cofactors. Strictly anaerobic, sulfate reducer D. baculatum bacteria are distinct, in terms of their biology, from E. coli. Thus, we introduced a series of alterations within the native dmb genes. As a result, more than 100 elements, further compiled into 32 operon variants, were constructed. The initial requirement for a specific maturase was omitted by the artificial truncation of the large Dmb subunit. The assembly of the produced H2ase subunit variants was investigated both, in vitro and in vivo. This approach resulted in 4 recombinant [NiFe] Dmb enzyme variants, capable of H2 evolution. The aim of this study was to overcome the gene expression, protein biosynthesis, maturation and ligand loading bottlenecks for the easy, fast, and cost-effective delivery of recombinant [NiFe] H2ase, using a commonly available E. coli strains. CONCLUSION: The optimized genetic constructs together with the developed growth and purification procedures appear to be a promising platform for further studies toward fully-active and O2 tolerant, recombinant [NiFeSe] Dmb H2ase, resembling the native Dmb enzyme. It could likely be achieved by selective cysteine to selenocysteine substitution within the active site of the [NiFe] Dmb variant.


Assuntos
Escherichia coli , Hidrogenase , Domínio Catalítico , Escherichia coli/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Endopeptidases/metabolismo
4.
Front Plant Sci ; 13: 1033869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507372

RESUMO

Maturases can specifically bind to intron-containing pre-RNAs, folding them into catalytic structures that facilitate intron splicing in vivo. Plants possess four nuclear-encoded maturase-related factors (nMAT1-nMAT4) and some maturases have been shown to involve in the splicing of different mitochondrial group II introns; however, the specific biological functions of maturases in maize are largely uncharacterized. In this study, we identified a maize ZmnMAT1 gene, which encodes a mitochondrion-localized type I maturase with an RT domain at N-terminus and an X domain at C-terminus. Loss-of-function mutation in ZmnMAT1 significantly reduced the splicing efficiencies of Nad1 intron 1 and Nad4 intron 2, and showed arrested embryogenesis and endosperm development, which may be related to impaired mitochondrial ultrastructure and function due to the destruction of the assembly and activity of complex I. Direct physical interaction was undetectable between ZmnMAT1 and the proteins associated with the splicing of Nad1 intron 1 and/or Nad4 intron 2 by yeast two-hybrid assays, suggesting the complexity of group II intron splicing in plants.

5.
Genes (Basel) ; 13(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35885919

RESUMO

Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.


Assuntos
Embriófitas , DNA Polimerase Dirigida por RNA , Embriófitas/genética , Íntrons/genética , Mitocôndrias/metabolismo , Proteínas/genética , Splicing de RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
6.
Synth Syst Biotechnol ; 7(2): 791-801, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35415278

RESUMO

Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods' limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.

7.
Mol Phylogenet Evol ; 170: 107441, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35189368

RESUMO

Organellar genomes often carry group II introns, which occasionally encode proteins called maturases that are important for splicing. The number of introns varies substantially among various organellar genomes, and bursts of introns have been observed in multiple eukaryotic lineages, including euglenophytes, with more than 100 introns in their plastid genomes. To examine the evolutionary diversity and history of maturases, an essential gene family among euglenophytes, we searched for their homologs in newly sequenced and published plastid genomes representing all major euglenophyte lineages. We found that maturase content in plastid genomes has a patchy distribution, with a maximum of eight of them present in Eutreptiella eupharyngea. The most basal lineages of euglenophytes, Eutreptiales, share the highest number of maturases, but the lowest number of introns. We also identified a peculiar convoluted structure of a gene located in an intron, in a gene within an intron, within yet another gene, present in some Eutreptiales. Further investigation of functional domains of identified maturases show that most of them lost at least one of the functional domains, which implies that the patchy maturase distribution is due to frequent inactivation and eventual loss over time. Finally, we identified the diversified evolutionary origin of analysed maturases, which were acquired along with the green algal plastid or horizontally transferred. These findings indicate that euglenophytes' plastid maturases have experienced a surprisingly dynamic history due to gains from diversified donors, their retention, and loss.


Assuntos
Euglênidos , Genoma de Cloroplastos , Euglênidos/genética , Evolução Molecular , Íntrons/genética , Filogenia , Plastídeos/genética
8.
Genome Biol Evol ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179578

RESUMO

The evolution of biological nitrogen fixation, uniquely catalyzed by nitrogenase enzymes, has been one of the most consequential biogeochemical innovations over life's history. Though understanding the early evolution of nitrogen fixation has been a longstanding goal from molecular, biogeochemical, and planetary perspectives, its origins remain enigmatic. In this study, we reconstructed the evolutionary histories of nitrogenases, as well as homologous maturase proteins that participate in the assembly of the nitrogenase active-site cofactor but are not able to fix nitrogen. We combined phylogenetic and ancestral sequence inference with an analysis of predicted functionally divergent sites between nitrogenases and maturases to infer the nitrogen-fixing capabilities of their shared ancestors. Our results provide phylogenetic constraints to the emergence of nitrogen fixation and are consistent with a model wherein nitrogenases emerged from maturase-like predecessors. Though the precise functional role of such a predecessor protein remains speculative, our results highlight evolutionary contingency as a significant factor shaping the evolution of a biogeochemically essential enzyme.


Assuntos
Fixação de Nitrogênio , Nitrogenase , Domínio Catalítico , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/genética , Filogenia
9.
Trop Life Sci Res ; 32(2): 15-28, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34367512

RESUMO

Andaliman (Zanthoxylum acanthopodium DC) is a native plant of North Sumatra province. Zanthoxylum acanthopodium is a member of Rutaceae family widely found in northern Sumatra, Indonesia. The aim of this study was to barcode Z. acanthopodium in North Sumatra province, Indonesia based on cpDNA maturase K (matK). Samples were collected in seven localities across six regions of North Sumatra province. Phylogenetic analysis was conducted using Maximum Likelihood method. The results of phylogenetic analysis indicate that Z. acanthopodium is a monophyletic group that is derived from a common ancestor. The results of the phylogenetic tree construction show that there is a grouping of accession between Z. acanthopodium species separate from other species in the Zanthoxylum genus as well as those of the Rutaceae family. The results showed that cpDNA matK marker can effectively be used as DNA barcoding to identify Z. acanthopodium.

10.
Phytomedicine ; 91: 153667, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332281

RESUMO

BACKGROUND: Taxilli Herba (TH) and Visci Herba (VH), defined as the leaves and branches of the mistletoe species Taxillus chinensis and Viscum coloratum, respectively, are popular herbal medicines in East Asia. However, commercial TH and VH products are frequently adulterated with related inauthentic mistletoe species, posing efficacy and safety concerns. Accurate species identification of herbal medicinal products is a prerequisite for quality control, but traditional morphological identification methods are hampered by difficulties in discriminating among closely related species and in identifying the source materials in processed products. PURPOSE: This study aimed to develop sequence-characterized amplified region (SCAR) markers and a multiplex-SCAR assay for rapid and accurate identification of authentic TH and VH. METHODS: The matK region was sequenced in a total of 20 samples from five mistletoe species, namely T. chinensis and V. coloratum, and three species often found in adulterated herbal medicines, T. sutchuenensis, V. articulatum, and Macrosolen tricolor. Species-specific nucleotide polymorphisms were identified and short regions (21-22 bp) containing at least two species-specific nucleotides close to the 3' end were incorporated into SCAR primers that produced uniquely sized PCR amplicons for each species. The five SCAR primer sets were also combined into a multiplex-SCAR assay. RESULTS: The SCAR primers successfully generated amplicons of the expected size for each target species even with low-DNA templates or with templates containing DNA from multiple samples. No amplification was observed in non-target species. The SCAR markers and the multiplex-SCAR assay successfully identified commercial TH and VH products that were counterfeit or adulterated in both dried and processed products. CONCLUSION: This is the first report to illustrate discrimination of genuine medicinal mistletoe species with DNA-based marker assays, enabling rapid and accurate species identification. The SCAR assays developed in this study will facilitate the standardization of commercial mistletoe products.


Assuntos
Erva-de-Passarinho , Preparações de Plantas/normas , Plantas Medicinais , Marcadores Genéticos , Erva-de-Passarinho/classificação , Plantas Medicinais/classificação , Reação em Cadeia da Polimerase
11.
Angew Chem Int Ed Engl ; 60(36): 19957-19964, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34164914

RESUMO

Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.


Assuntos
Malonatos/metabolismo , Peptídeos/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Malonatos/química , Estrutura Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Sulfatases/química
12.
Plant J ; 106(4): 1128-1147, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683754

RESUMO

Group-II introns are self-splicing mobile genetic elements consisting of catalytic intron-RNA and its related intron-encoded splicing maturase protein cofactor. Group-II sequences are particularly plentiful within the mitochondria of land plants, where they reside within many critical gene loci. During evolution, the plant organellar introns have degenerated, such as they lack regions that are are required for splicing, and also lost their evolutionary related maturase proteins. Instead, for their splicing the organellar introns in plants rely on different host-acting protein cofactors, which may also provide a means to link cellular signals with respiratory functions. The nuclear genome of Arabidopsis thaliana encodes four maturase-related factors. Previously, we showed that three of the maturases, nMAT1, nMAT2 and nMAT4, function in the excision of different group-II introns in Arabidopsis mitochondria. The function of nMAT3 (encoded by the At5g04050 gene locus) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria, resulting in complex-I biogenesis defects and altered respiratory activities. Functional complementation of nMAT3 restored the organellar defects and embryo-arrested phenotypes associated with the nmat3 mutant line. Notably, nMAT3 and nMA4 were found to act on the same RNA targets but have no redundant functions in the splicing of nad1 transcripts. The two maturases, nMAT3 and nMAT4 are likely to cooperate together in the maturation of nad1 pre-RNAs. Our results provide important insights into the roles of maturases in mitochondria gene expression and the biogenesis of the respiratory system during early plant life.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Desoxirribonucleases/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Desoxirribonucleases/genética , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fenótipo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
13.
Saudi J Biol Sci ; 28(1): 1123-1127, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424406

RESUMO

An endangered and rare species Aloe pseudorubroviolacea from the plant family Asphodelaceae which is presently recorded as endangered in Saudi Arabia collected from Al-Baha region of Saudi Arabia its GPS Latitude and Longitude coordinates 19.8345, 41.5481. The chloroplast matK and rbcL gene was considered in this study based on molecular identification the size is about 571 and 664 bp respectively. From the sequence analysis the gene matK and rbcL confirm that this species is very much closely related with A. rubroviolacea and also inter related with the species Astroloba rubriflora, Chrysopogon gryllus, Chortolirion angolense shows about 98.7% sequence homology. The partial matK and rbcL gene sequence discriminate Aloe pseudorubroviolacea from the closely related plant species, A. rubroviolacea. The gene sequence of rbcL discriminates the species from Chrysopogon gryllus and Chortolirion angolense, demonstrates the nucleotide variations in 3 different sites (623C/T; 653C/T; 700C/A). This study showed that matK and rbcL sequence region of chloroplast gene used to authenticate the samples of A. pseudorubroviolacea and which provide to help in correct identification and conservation process of this medicinally valuable endangered plant species.

14.
Plant Cell Physiol ; 62(2): 293-305, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33377894

RESUMO

Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Íntrons , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/fisiologia , Sementes/metabolismo , Zea mays/genética , Zea mays/metabolismo
15.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317061

RESUMO

Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.


Assuntos
Mitocôndrias/genética , Splicing de RNA , Nódulos Radiculares de Plantas/genética , Regulação da Expressão Gênica de Plantas , Íntrons , Mitocôndrias/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transcriptoma
16.
Microbiology (Reading) ; 166(9): 854-860, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32731905

RESUMO

Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.


Assuntos
Escherichia coli/enzimologia , Hidrogenase/metabolismo , Pectobacterium/enzimologia , Peptídeo Hidrolases/metabolismo , Domínio Catalítico , Ativação Enzimática , Escherichia coli/genética , Hidrogênio/metabolismo , Isoenzimas/metabolismo , Óperon , Pectobacterium/genética , Peptídeo Hidrolases/genética
17.
J Biol Chem ; 295(25): 8425-8441, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366462

RESUMO

Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/uso terapêutico , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Proteases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química
18.
Phytochemistry ; 176: 112400, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32408189

RESUMO

Adulterants in processed food and herbal medicines reduce their safety, quality control, or pharmacological efficacy. Four mistletoe species, including Viscum coloratum, inhabit Korea. Leaves and branches of V. coloratum, defined as edible or medicinal mistletoe species in Korean, are used to prepare Korean herbal medicines as well as leached tea. However, other mistletoe species including Taxillus sutchuenensis var. duclouxii, Korthalsella japonica, and Loranthus tanakae are frequently distributed as authentic V. coloratum in Korean markets because of similarities in the branches morphology and Korean names of these species with V. coloratum. Although herbal medicines and food products prepared from the other mistletoe species are inauthentic, they are sold at high prices because of the rarity of these species. Thus, it is important to distinguish between authentic and inauthentic adulterant mistletoe species. In this study, we developed species-specific primer, based on matK sequences, suitable for both conventional PCR and real time PCR (qPCR) assay. These assays allowed rapid discrimination among all four mistletoe species. Moreover, qPCR assay enabled the detection of trace amounts of adulterant mistletoe species in V. coloratum samples. Furthermore, we used these assays to monitor commercial mistletoe products distributed in Korean markets. Our data suggest that these methods would serve as a reliable genetic tool to prevent adulteration and standardize the quality of commercial V. coloratum products.


Assuntos
Produtos Biológicos , Erva-de-Passarinho , Plantas Medicinais/genética , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia
19.
Plant Direct ; 4(3): e00208, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32185246

RESUMO

Maturases are prokaryotic enzymes that aid self-excision of introns in precursor RNAs and have evolutionary ties to the nuclear spliceosome. Both the mitochondria and chloroplast, due to their prokaryotic origin, encode a single intron maturase, MatR for the mitochondria and MatK for the chloroplast. MatK is proposed to aid excision of seven different chloroplast group IIA introns that reside within precursor RNAs for essential elements of chloroplast function. We have developed an in vitro activity assay to test chloroplast group IIA intron excision. Using this assay, we demonstrate self-excision of the group IIA intron of the second intron of rps12 and the group IIA intron of rpl2. We further show that the addition of heterologously expressed MatK protein increases efficiency of group IIA intron self-splicing for the second intron of rps12 but not the group IIA intron of rpl2. These data, to our knowledge, provide the first direct evidence of MatK's maturase activity.

20.
J Inorg Biochem ; 201: 110806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31505439

RESUMO

Electron paramagnetic resonance (EPR) inversion recovery curves for vanadium catecholates and iron­sulfur clusters were analyzed with three models: the sum of two exponentials, a stretched exponential, and a model-free distribution of exponentials (UPEN). For all data sets studied fits with a stretched exponential were statistically indistinguishable from the sum of two exponentials, and were significantly better than for single exponentials. UPEN provides insights into the structures of the distributions. For a vanadium(IV) tris catecholate the distribution of relaxation rates calculated with UPEN shows the contribution from spectral diffusion at low temperatures. The energy of the local mode for this complex, found from the temperature dependence of the spin lattice relaxation, is consistent with values expected for a metal-ligand vibration. For the [2Fe-2S]+ cluster in pyruvate formate lyase activating enzyme (PFL-AE) the small stretched exponential ß values (0.3) at low temperature and the distributions calculated with UPEN reflect the contribution from a second rapidly relaxing species that could be difficult to detect by continuous wave EPR. The distributions in 1/T1 for the [4Fe-4S]+ clusters in Mycofactocin maturase were about a factor of four wider than for the three other systems studied. The very broad distribution of relaxation rates may be due to protein mobility and distributions in electronic energies and local environments for the clusters. UPEN provides insight into several situations that can result in low values of stretch parameter ß including contributions from spectral diffusion, overlapping signals from distinguishable clusters, or very wide distributions.


Assuntos
Catecóis/química , Proteínas Ferro-Enxofre/química , Compostos Organometálicos/química , Vanádio/química , Acetiltransferases/química , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA