Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 631: 114257, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043981

RESUMO

As an indispensable component of various living organisms, the antioxidant proteins have been studied for anti-aging and prevention of various diseases, such as altitude sickness, coronary heart disease, and even cancer. However, the traditional experimental methods for identifying the antioxidant proteins are very expensive and time-consuming. Thus, to address the challenge, a new predictor, named ANOX, was developed in this study. Multiple features, such as frequency matrix features (FRE), amino acid and dipeptide composition (AADP), evolutionary difference formula features (EEDP), k-separated bigrams (KSB), and PSI-PRED secondary structure (PRED), were extracted to generate the original feature space. To find the optimized feature subset, the Max-Relevance-Max-Distance (MRMD) algorithm was implemented for feature ranking and our model received the best performance with the top 1170 features. Rigorous tests were performed to evaluate the performance of ANOX, and the results showed that ANOX achieved a major improvement in the prediction accuracy of the antioxidant proteins (AUC:0.930 and 0.935 using 5-fold cross-validation or the jackknife test) compared to the state-of-the-art predictor AOPs-SVM (AUC:0.869 and 0.885). The dataset used in this study and the source code of ANOX are all available at https://github.com/NWAFU-LiuLab/ANOX.


Assuntos
Algoritmos , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Estrutura Secundária de Proteína , Máquina de Vetores de Suporte
2.
Mol Ther Nucleic Acids ; 19: 293-303, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31865116

RESUMO

Pseudouridine (Ψ) is the most abundant RNA modification and has been found in many kinds of RNAs, including snRNA, rRNA, tRNA, mRNA, and snoRNA. Thus, Ψ sites play a significant role in basic research and drug development. Although some experimental techniques have been developed to identify Ψ sites, they are expensive and time consuming, especially in the post-genomic era with the explosive growth of known RNA sequences. Thus, highly accurate computational methods are urgently required to quickly detect the Ψ sites on uncharacterized RNA sequences. Several predictors have been proposed using multifarious features, but their evaluated performances are still unsatisfactory. In this study, we first identified Ψ sites for H. sapiens, S. cerevisiae, and M. musculus using the sequence features from the bi-profile Bayes (BPB) method based on the random forest (RF) and support vector machine (SVM) algorithms, where the performances were evaluated using 5-fold cross-validation and independent tests. It was found that the SVM-based accuracies were 3.55% and 5.09% lower than the iPseU-CUU predictor for the H_990 and S_628 datasets, respectively. Almost the same-level results were obtained for M_994 and an independent H_200 dataset, even showing a 5.0% improvement for S_200. Then, three different kinds of features, including basic Kmer, general parallel correlation pseudo-dinucleotide composition (PC-PseDNC-General), and nucleotide chemical property (NCP) and nucleotide density (ND) from the iRNA-PseU method, were combined with BPB to show their comprehensive performances, where the effective features are selected by the max-relevance-max-distance (MRMD) method. The best evaluated accuracies of the combined features for the S_628 and M_994 datasets were achieved at 70.54% and 72.45%, which were 2.39% and 0.65% higher than iPseU-CUU. For the S_200 dataset, it was also improved 8% from 69% to 77%. However, there was no obvious improvement for H. sapiens, which was evaluated as approximately 63.23% and 72.0% for the H_990 and H_200 datasets, respectively. The overall performances for Ψ identification using BPB features as well as the combined features were not obviously improved. Although some kinds of feature extraction methods based on the RNA sequence information have been applied to construct the predictors in previous studies, the corresponding accuracies are generally in the range of 60%-70%. Thus, researchers need to reconsider whether there is any sequence feature in the RNA Ψ modification prediction problem.

3.
J Proteome Res ; 18(7): 2931-2939, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136183

RESUMO

Cellular respiration provides direct energy substances for living organisms. Electron storage and transportation should be completed through electron transport chains during the cellular respiration process. Thus, identifying electron transport proteins is an important research task. In protein identification, selection of the feature extraction method and classification algorithm has a direct bearing on classification. The distance-based Top-n-gram method, which was proposed based on the frequency profile and considered evolutionary information, was used in this study for feature extraction. The Max-Relevance-Max-Distance algorithm was adopted for feature selection. The first 4D features that greatly influenced the classification result were selected to form the feature data set. Finally, the random forest algorithm was used to identify electron transport proteins. Under the 10-fold cross-validation of the model constructed in this study, sensitivity, specificity, and accuracy rates surpassed 85%, 80%, and 82%, respectively. In the testing set, F-measure, AUC value, and accuracy exceeded 74%, 95%, and 86%, respectively. These experimental results indicated that the classification model built in this study is an effective tool in identifying electron transport proteins.


Assuntos
Algoritmos , Proteínas de Transporte/análise , Complexo de Proteínas da Cadeia de Transporte de Elétrons/análise , Transporte de Elétrons , Classificação , Modelos Químicos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA