Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37515179

RESUMO

Cyclophilin D (CypD) is regulated during the innate immune response of insects. However, the mechanism by which CypD is activated under innate immunosuppression is not understood. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus in the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we demonstrate that MbBV promotes the CypD acetylation of S. litura, resulting in an immunosuppressive phenotype characterized by increased apoptosis of hemocytes and MbBV-infected cells. Under MbBV infection, the inhibition of CypD acetylation significantly rescued the apoptotic cells induced by MbBV, and the point-mutant fusion proteins of CypDK125R-V5 were deacetylated. The CypD-V5 fusion proteins were acetylated in MbBV-infected cells. Deacetylation of CypDK125R-V5 can also suppress the MbBV-induced increase in apoptosis. These results indicate that CypD is involved in the MbBV-suppressed innate immune response via the CypD-acetylation pathway and S. litura CypD is acetylated on K125.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Peptidil-Prolil Isomerase F , Lisina , Acetilação , Spodoptera , Terapia de Imunossupressão , Apoptose/fisiologia
2.
Arch Insect Biochem Physiol ; 110(1): e21877, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218062

RESUMO

Microplitis bicoloratus bracovirus (MbBV) induces apoptosis in hemocytes of the host (Spodoptera litura) via the cyclophilin A (CypA)-mediated signaling pathway. However, the mechanisms underlying CypA-mediated signaling during apoptosis remain largely unknown. Therefore, in this study, we investigated how CypA and apoptosis-inducing factor (AIF) interact during MbBV-mediated apoptosis. Our findings showed that MbBV induces apoptosis through the CypA-AIF axis of insect immune suppression. In MbBV-infected Spli221 cells, both the expression of the cypa gene and the release of AIF from the mitochondria increased the number of apoptotic cells. CypA and AIF underwent concurrent cytoplasm-nuclear translocation. Conversely, blocking of AIF release from mitochondria not only inhibited the CypA-AIF interaction but also inhibited the cytoplasmic-nuclear translocation of AIF and CypA. Importantly, the survival of the apoptotic phenotype was significantly rescued in MbBV-infected Spli221 cells. In addition, we found that the cyclosporine A-mediated inhibition of CypA did not prevent the formation of the CypA and AIF complex; rather, this only suppressed genomic DNA fragmentation. In vitro experiments revealed direct molecular interactions between recombinant CypA and AIF. Taken together, our results demonstrate that the CypA-AIF interaction plays an important role in MbBV-induced innate immune suppression. This study will help to clarify aspects of insect immunological mechanisms and will be relevant to biological pest control.


Assuntos
Polydnaviridae , Animais , Apoptose , Fator de Indução de Apoptose/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , Polydnaviridae/fisiologia , Spodoptera/metabolismo
3.
Dev Comp Immunol ; 95: 101-107, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776419

RESUMO

Eukaryotic initiation factor 4E (eIF4E) is regulated during the innate immune response. However, its translational regulation under innate immune suppression remains largely unexplored. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus harbored by the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we generated eIF4E dsRNA and used it to silence the eIF4E gene of S. litura, resulting in a hallmark immunosuppressive phenotype characterized by increased apoptosis of hemocytes and retardation of head capsule width development. In response to natural parasitism, loss of eIF4E function was associated with similar immunosuppression, and we detected no significant differences between the response to parasitism and treatment with eIF4E RNAi. Under MbBV infection, eIF4E overexpression significantly suppressed MbBV-induced increase in apoptosis and suppressed apoptosis to the same extent as co-expression of both eIF4E and eIF4A. There were no significant differences between MbBV-infected and uninfected larvae in which eIF4E was overexpressed. More importantly, in the eIF4E RNAi strain, eIF4A RNAi did not increase apoptosis. Collectively, our results indicate that eIF4E plays a nodal role in the MbBV-suppressed innate immune response via the eIF4E-eIF4A axis.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Proteínas de Insetos/imunologia , Polydnaviridae/imunologia , Spodoptera/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/imunologia , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Transdução de Sinais/imunologia , Spodoptera/parasitologia , Simbiose/imunologia , Vespas/imunologia , Vespas/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30623473

RESUMO

Microplitis bicoloratus bracovirus (MbBV) is a polydnavirus found in the parasitic wasp M. bicoloratus. Although MbBV is a known inducer of apoptosis in host hemocytes, the mechanism by which this occurs remains elusive. In this study, we found that expression of cyclophilin A (CypA) was significantly upregulated in Spodoptera litura hemocytes at 6-day post-parasitization. Similar results were reported in High Five cells (Hi5 cells) infected by MbBV, suggesting that the upregulation of CypA is linked to MbBV infection in insect cells. cDNA encoding CypA was cloned from parasitized hemocytes of S. litura, and bioinformatic analyses showed that S. litura CypA belongs to the cyclophilin family of proteins. Overexpression of S. litura CypA in Hi5 cells revealed that the protein promotes MbBV-induced apoptosis in vitro. Conversely, suppression of the expression and activity of CypA protein significantly rescued the apoptotic phenotype observed in MbBV-infected Hi5 cells, suggesting that it plays a key role in this process. MbBV infection also promoted the cytoplasmic-nuclear translocation of CypA in Hi5 cells. Taken together, these results suggest that MbBV infection upregulates the expression of CypA, which is required for MbBV-mediated apoptosis. Our findings provide insight into the role that CypA plays in insect cellular immune response.


Assuntos
Apoptose , Ciclofilina A/genética , Imunidade Celular , Proteínas de Insetos/genética , Polydnaviridae , Spodoptera/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclofilina A/química , Ciclofilina A/metabolismo , Hemócitos/imunologia , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Polydnaviridae/fisiologia , Homologia de Sequência de Aminoácidos , Spodoptera/crescimento & desenvolvimento , Spodoptera/parasitologia , Regulação para Cima , Vespas/crescimento & desenvolvimento , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA