Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39203510

RESUMO

Salmonella species are causal pathogens instrumental in human food-borne diseases. The pandemic survey related to multidrug resistant (MDR) Salmonella genomics enables the prevention and control of their dissemination. Currently, serotype Mbandaka is notorious as a multiple host-adapted non-typhoid Salmonella. However, its epidemic and MDR properties are still obscure, especially its genetic determinants accounting for virulence and MD resistance. Here, we aim to characterize the genetic features of a strain SMEH pertaining to Salmonella Mbandaka (S. Mbandaka), isolated from the patient's hydropericardium, using cell infections, a mouse model, antibiotic susceptibility test and comparative genomics. The antibiotic susceptibility testing showed that it could tolerate four antibiotics, including chloramphenicol, tetracycline, fisiopen and doxycycline by Kirby-Bauer (K-B) testing interpreted according to the Clinical and Laboratory Standards Institute (CLSI). Both the reproducibility in RAW 264.7 macrophages and invasion ability to infect HeLa cells with strain SMEH were higher than those of S. Typhimurium strain 14028S. In contrast, its attenuated virulence was determined in the survival assay using a mouse model. As a result, the candidate genetic determinants responsible for antimicrobial resistance, colonization/adaptability and their transferability were comparatively investigated, such as bacterial secretion systems and pathogenicity islands (SPI-1, SPI-2 and SPI-6). Moreover, collective efforts were made to reveal a potential role of the plasmid architectures in S. Mbandaka as the genetic reservoir to transfer or accommodate drug-resistance genes. Our findings highlight the essentiality of antibiotic resistance and risk assessment in S. Mbandaka. In addition, genomic surveillance is an efficient method to detect pathogens and monitor drug resistance. The genetic determinants accounting for virulence and antimicrobial resistance underscore the increasing clinical challenge of emerging MDR Mbandaka isolates, and provide insights into their prevention and treatment.

2.
Front Microbiol ; 14: 1130891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089562

RESUMO

Introduction: In north-western France, Salmonella enterica susp. enterica serovar Mbandaka (S. Mbandaka) is most frequently isolated from bovine and dairy samples. While this serovar most often results in asymptomatic carriage, for a number of years it has caused episodes of abortions, which have serious economic consequences for the sector. Interestingly, this serovar is also isolated from Gallus gallus in the same geographic zone. Despite its prevalence in bovines in north-western France, S. Mbandaka has not been broadly studied at the genomic level, and its prevalence and host adaptation are still not fully understood. Methods: In this study, we analyzed the genomic diversity of 304 strains of S. Mbandaka isolated from the bovine and poultry sectors in this area over a period of 5 years. A phylogenetic analysis was carried out and two approaches were followed to identify conserved genes and mutations related to host associations. The first approach targeted the genes compiled in the MEGARESv2, Resfinder, VFDB and SPI databases. Plasmid and phage contents were also investigated. The second approach refers to an in-house algorithm developed for this study that computes sensitivity, specificity, and accuracy of accessory genes and core variants according to predefined genomes groups. Results and discussion: All the analyzed strains belong to the multi-locus sequence type profile ST413, and the phylogenomic analysis revealed main clustering by host (bovine and poultry), emphasizing the circulation of 12 different major clones, of which seven circulate in poultry and five in the bovine sector in France and a likely food production chain adaptation of these clones. All strains present resistance determinants including heavy metals and biocides that could explain the ability of this serovar to survive and persist in the environment, within herds, and in food processing plants. To explore the wild animal contribution to the spread of this serovar in north-western France, we retrieved S. Mbandaka genomes isolated from wild birds from EnteroBase and included them in the phylogenomic analysis together with our collection. Lastly, screening of accessory genes and major variants allowed us to identify conserved specific mutations characteristic of each major cluster. These mutations could be used to design useful probes for food safety surveillance.

3.
F1000Res ; 9: 1142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214877

RESUMO

Background: Salmonella enterica serotype Mbandaka ( Salmonella ser. Mbandaka) is a multi-host adapted Non-typhoidal Salmonella (NTS) that can cause foodborne illnesses in human. Outbreaks of Salmonella ser. Mbandaka contributed to the economic stress caused by NTS due to hospitalizations. Whole genome sequencing (WGS)-based phylogenomic analysis facilitates better understanding of the genomic features that may expedite the foodborne spread of Salmonella ser. Mbandaka. Methods: In the present study, we define the population structure, antimicrobial resistance (AMR), and virulence profile of Salmonella ser. Mbandaka using WGS data of more than 400 isolates collected from different parts of the world. We validated the genotypic prediction of AMR and virulence phenotypically using an available set of representative isolates. Results: Phylogenetic analysis of Salmonella ser. Mbandaka using Bayesian approaches revealed clustering of the population into two major groups; however, clustering of these groups and their subgroups showed no pattern based on the host or geographical origin. Instead, we found a uniform virulence gene repertoire in all isolates. Phenotypic analysis on a representative set of isolates showed a similar trend in cell invasion behavior and adaptation to a low pH environment. Both genotypic and phenotypic analysis revealed the carriage of multidrug resistance (MDR) genes in Salmonella ser. Mbandaka. Conclusions: Overall, our results show that the presence of multidrug resistance along with adaptation to broad range of hosts and uniformity in the virulence potential, isolates of Salmonella ser. Mbandaka from any source could have the potential to cause foodborne outbreaks as well as AMR dissemination.


Assuntos
Salmonella enterica , Animais , Antibacterianos , Teorema de Bayes , Humanos , Filogenia , Salmonella/genética , Salmonella enterica/genética , Sorogrupo , Virulência/genética
4.
Avian Dis ; 64(1): 46-52, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32267124

RESUMO

Rodents serve as amplifiers of Salmonella infections in poultry flocks and can serve as a source of Salmonella contamination in the environment even after thorough cleaning and disinfection. This study aims to determine the dynamics of Salmonella occurrence in rodents and its relation to Salmonella contamination in the layer farm environment, including air dusts and eggs. From 2008 to 2017, roof rats (Rattus rattus), environmental swabs, air dusts, and eggs were collected from an intensive commercial layer farm in East Japan and were tested for Salmonella spp. using standard procedures. In roof rat samples, the Salmonella isolation rate was reached at 10% (95% confidence interval [CI] 8.1-21.9) in which Salmonella Corvallis, Salmonella Infantis, Salmonella Potsdam, and Salmonella Mbandaka were the frequent isolates from the cecal portion of the intestines. On the other hand, the prevalence rate of Salmonella in environmental swabs was at 5.1% (95% CI 2.2-7.4) while air dusts were at 0.9% (95% CI 0.2-1.8). It was observed that the prevalence of predominant Salmonella serotypes shifted over time; in roof rats, it was noted that Salmonella Potsdam gradually replaced Salmonella Infantis. In environmental swabs and eggs, Salmonella Corvallis and Salmonella Potsdam increased significantly while Salmonella Infantis became less frequent. In air dusts, Salmonella Corvallis was observed to decrease and Salmonella Potsdam became more common. Based on our findings, the role of roof rats in the epidemiology of Salmonella in layer farms was expanded from being a reservoir and an amplifier host into a shifting vessel of the most predominant serotypes.


Assuntos
Galinhas , Doenças das Aves Domésticas/transmissão , Ratos , Salmonelose Animal/transmissão , Salmonella/fisiologia , Animais , Abrigo para Animais , Japão/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Prevalência , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia
5.
Avian Pathol ; 49(3): 305-310, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31965821

RESUMO

With the exception to Salmonella enterica serotype Typhimurium and S. Enteritidis (serogroups B [O:4] and D [O:9], respectively), there have been very few studies conducted on the respiratory tract as route of infection in chickens with salmonellas from serogroup C1 (O:6,7). Therefore, the purpose of this present study was to determine the potential organ invasion by Salmonella enterica serotype Potsdam (SP), S. Mbandaka (SM), and S. Infantis (SI) from serogroup C1 (O:6,7) and compare their characteristics with those of S. Enteritidis (SE) on intratracheally (IT) challenged 3-week-old layer chicks. A total of 360 one-day-old White Leghorn layer chicks were acquired from a commercial hatchery and randomly assigned into four treatment groups (SP, SM, SI, and SE, respectively), consisting of three independent trials. Chicks were grown up to 21 days (3 weeks) and IT-challenged thereafter with 106 CFU of respective salmonella organisms per group (n = 30). Chicks (n = 5) were humanely sacrificed every 24 h for 6 days post-IT infection and organs such as lung, heart, liver, spleen, kidney and caecal content were cultured for salmonella. All treatment groups exhibited colonization of lungs and caecal contents at 1 d (P = 0.475) and 4 d (P = 0.696) post-IT infection, respectively. There was no isolation of SP, SM, and SI in heart, liver, spleen, and kidney. In contrast, SE was obtained from heart, liver, and spleen of IT-infected chicks. The findings of this study contribute to a better understanding of the importance of the respiratory route in salmonella infection in poultry.


Assuntos
Galinhas , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella/classificação , Sorogrupo , Animais
6.
Bull Soc Pathol Exot ; 113(4): 187-189, 2020.
Artigo em Francês | MEDLINE | ID: mdl-33826270

RESUMO

The province of Equateur in the north-west of the Democratic Republic of the Congo (DRC) experienced a new Ebola outbreak in 2020. Among the responses, the actions of prevention and control of the infections were essential, particularly in health facilities. They need to be developed from a long-term perspective and not as a one-off emergency response.


La province de l'Équateur dans le nord-ouest de la RDC a subi en 2020 une nouvelle épidémie de maladie à virus Ebola. Parmi les réponses à y apporter, les activités de prévention et de contrôle des infections ont été essentielles, en particulier dans les structures de santé. Elles sont à développer dans une optique de long terme et non pas de réponse ponctuelle en urgence.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , República Democrática do Congo/epidemiologia , Surtos de Doenças/prevenção & controle , Instalações de Saúde , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA