Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Int J Cardiol ; 412: 132321, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38977225

RESUMO

BACKGROUND: Left ventricular lead positioning represents a key step in CRT optimization. However, evidence for its guidance based on specific topographical factors and related imaging techniques is sparse. OBJECTIVE: To analyze reverse remodeling (RR) and clinical events in CRT recipients based on LV cathode (LVC) position relative to latest mechanical activation (LMA) and scar as determined by cardiac magnetic resonance (CMR). METHODS: This is a retrospective single-center study of 68 consecutive Q-LV-guided CRT-D and CRT-P recipients. Through CMR-based 3D reconstructions overlayed on fluoroscopy images, LVCs were stratified as concordant, adjacent, or discordant to LMA (3 segments with latest and greatest radial strain) and scar (segments with >50% scar transmurality). The primary endpoint of RR (expressed as percentage ESV change) and secondary composite endpoint of HF hospitalizations, LVAD/heart transplant, or cardiovascular death were compared across categories. RESULTS: LVC proximity to LMA was associated with a progressive increase in RR (percentage ESV change: concordant -47.0 ± 5.9%, adjacent -31.4 ± 3.1%, discordant +0.4 ± 3.7%), while proximity to scar was associated with sharply decreasing RR (concordant +10.7 ± 12.9%, adjacent +0.3 ± 5.3%, discordant -31.3 ± 4.4%, no scar -35.4 ± 4.8%). 4 integrated classes of LVC position demonstrated a significant positive RR gradient the more optimal the category (class I -47.0 ± 5.9%, class II -34.9 ± 2.8%, class III -5.5 ± 4.3%, class IV + 3.4 ± 5.2%). Freedom from composite secondary endpoint of HF hospitalization, LVAD/heart transplant, or cardiovascular death confirmed these trends demonstrating significant differences across both integrated as well as individual LMA and scar categories. CONCLUSION: Integrated CMR-determined LVC position relative to LMA and scar stratifies response to CRT.


Assuntos
Imagem Cinética por Ressonância Magnética , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Imagem Cinética por Ressonância Magnética/métodos , Idoso , Terapia de Ressincronização Cardíaca/métodos , Remodelação Ventricular/fisiologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Eletrodos Implantados , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Dispositivos de Terapia de Ressincronização Cardíaca , Seguimentos
2.
Sci Rep ; 14(1): 15386, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965298

RESUMO

In this study, we explore the mechanical treatment of two metal-organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 33 Taguchi orthogonal array. The results highlight a marked improvement in CO2 adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g-1) to 41.37 wt.% (9.40 mmol g-1), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO2 adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample's performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO2 capture and storage applications.

3.
Int J Pharm ; 661: 124312, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876441

RESUMO

HYPOTHESIS: Sildenafil base and bosentan monohydrate are co-administered in a chronic therapy of pulmonary arterial hypertension (PAH). Both drugs are poorly soluble in water, and their bioavailability is limited to ca. 50 %. Since bosentan is a weak acid, whereas sildenafil is a weak base, we assumed that their co-amorphization could: (i) improve their solubility in the gastrointestinal fluids, (ii) enable to reach supersaturation and (iii) ensure stabilization of supersaturated solutions. If successful, this could accelerate the development of new fixed-dose combination drugs. EXPERIMENTS: The co-amorphous formulations were prepared using high energy ball milling. Their solid state properties were assessed using XRD, DSC, FT-MIR, and dielectric spectroscopy. Particle size distribution and surface wetting were also analyzed. Polarizing optical microscopy and scanning electron microscopy were applied to assess the microstructure of these powders. A new HPLC-DAD method was developed for a simultaneous quantification of both drugs. FINDINGS: It was shown that binary formulations in which bosentan was molecularly dispersed in sildenafil base (Tg = 64-78 °C) could be manufactured in the high energy ball milling process. When the sildenafil load was below 50 wt. %, the formulations showed the greatest thermal stability and formed long-lasting bosentan supersaturation in PBS.


Assuntos
Bosentana , Composição de Medicamentos , Citrato de Sildenafila , Solubilidade , Sulfonamidas , Bosentana/química , Bosentana/administração & dosagem , Citrato de Sildenafila/química , Citrato de Sildenafila/administração & dosagem , Sulfonamidas/química , Sulfonamidas/administração & dosagem , Composição de Medicamentos/métodos , Tamanho da Partícula , Química Farmacêutica/métodos , Anti-Hipertensivos/química , Anti-Hipertensivos/administração & dosagem , Estabilidade de Medicamentos , Combinação de Medicamentos
4.
Adv Sci (Weinh) ; 11(28): e2401022, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666392

RESUMO

Although sodium-ion batteries (SIBs) offer promising low-cost alternatives to lithium-ion batteries (LIBs), several challenges need to be overcome for their widespread adoption. A primary concern is the optimization of carbon anodes. Graphite, vital to the commercial viability of LIBs, has a limited capacity for sodium ions. Numerous alternatives to graphite are explored, particularly focusing on disordered carbons, including hard carbon. However, compared with graphite, most of these materials underperform in LIBs. Furthermore, the reaction mechanism between carbon and sodium ions remains ambiguous owing to the structural diversity of disordered carbon. A straightforward mechanical approach is introduced to enhance the sodium ion storage capacity of graphite, supported by comprehensive analytical techniques. Mechanically activated graphite delivers a notable reversible capacity of 290.5 mAh·g-1 at a current density of 10 mA·g-1. Moreover, it maintains a capacity of 157.7 mAh·g-1 even at a current density of 1 A·g-1, benefiting from the defect-rich structure achieved by mechanical activation. Soft X-ray analysis revealed that this defect-rich carbon employs a sodium-ion storage mechanism distinct from that of hard carbon. This leads to an unexpected reversible reaction on the solid electrolyte surface. These insights pave the way for innovative design approaches for carbon electrodes in SIB anodes.

5.
Carbohydr Polym ; 333: 121982, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494234

RESUMO

The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.

6.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473497

RESUMO

This work focused on the production of the MoAlB MAB phase through self-propagating, high-temperature synthesis in the thermal explosion mode. The influence of the method of a Mo-Al-B-powder reaction mixture preparation on the combustion temperature, mechanism, and stages of the MAB phase formation in the combustion process was investigated. The combustion temperatures of the mixtures obtained in the rotary ball mill and high-speed planetary ball mill were 1234 and 992 °C, respectively. The formation of intermediate compounds Mo3Al8 and α-MoB in the combustion front, along with MoAlB, was established using the time-resolved X-ray diffraction method. In the case of the mixture prepared in a ball mill, the primary interaction in the combustion front occurred through the Al melt, and in the case of using a planetary mill, solid-phase reactions played an important role. The mechanical activation of the mixture in a planetary mill also accelerated the processes of phase formation. The method of a reaction mixture preparation has virtually no effect on the MoAlB MAB phase content in combustion products (92-94%), but it does affect their structure. The synthesis products have a lamellar structure composed of MAB grains with a thickness of ~0.4 µm and a length of ~2-10 µm.

7.
Waste Manag ; 178: 76-84, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382349

RESUMO

The efficient and sustainable recovery of rare earth resources from spent NdFeB magnets has received considerable and increasing attention. However, the currently prevalent NdFeB magnets recovery techniques focus only on the recovery for rare earth elements (REEs), some of which also recover cobalt (Co) or boron (B). Herein, a simple mechanochemical strategy was proposed to recover REE, Co, and B from spent NdFeB magnets by mixing the NdFeB magnets powder and FeCl3 6H2O through the grinding-roasting-water leaching technological route. The results indicated high leaching efficiencies of 98.94 % for REEs, 99.99 % for Co, and 93.36 % for B from the NdFeB magnets. Additionally, iron remains in the leaching residue as iron oxide (96.73 wt %), achieving the complete separation of REEs, Co, B, and Fe. This mechanochemical based technology offers a green and efficient recovery process, facilitating more effective synergistic recovery of valuable elements from spent NdFeB magnets.

8.
J Cardiovasc Comput Tomogr ; 18(2): 170-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38242778

RESUMO

BACKGROUND: Lead placement at the latest mechanically activated left ventricle (LV) segments is strongly correlated with response to cardiac resynchronization therapy (CRT). We demonstrate the feasibility of a cardiac 4DCT motion correction algorithm (ResyncCT) in estimating LV mechanical activation for guiding lead placement in CRT. METHODS: Subjects with full cardiac cycle 4DCT images acquired using a wide-detector CT scanner for CRT planning/upgrade were included. 4DCT images exhibited motion artifact-induced false-dyssynchrony, hindering LV mechanical activation time estimation. Motion-corrupted images were processed with ResyncCT to yield motion-corrected images. Time to onset of shortening (TOS) was estimated in each of 72 endocardial segments. A false-dyssynchrony index (FDI) was used to quantify the extent of motion artifacts in the uncorrected and the ResyncCT images. After motion correction, the change in classification of LV free-wall segments as optimal target sites for lead placement was investigated. RESULTS: Twenty subjects (70.7 â€‹± â€‹13.9 years, 6 female) were analyzed. Motion artifacts in the ResyncCT-processed images were significantly reduced (FDI: 28.9 â€‹± â€‹9.3 â€‹% vs 47.0 â€‹± â€‹6.0 â€‹%, p â€‹< â€‹0.001). In 10 (50 â€‹%) subjects, ResyncCT motion correction yielded statistically different TOS estimates (p â€‹< â€‹0.05). Additionally, 43 â€‹% of LV free-wall segments were reclassified as optimal target sites for lead placement after motion correction. CONCLUSIONS: ResyncCT significantly reduced motion artifacts in wide-detector cardiac 4DCT images, yielded statistically different time to onset of shortening estimates, and changed the location of optimal target sites for lead placement. These results highlight the potential utility of ResyncCT motion correction in CRT planning when using wide-detector 4DCT imaging.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Feminino , Terapia de Ressincronização Cardíaca/métodos , Insuficiência Cardíaca/terapia , Valor Preditivo dos Testes , Coração , Ventrículos do Coração/diagnóstico por imagem , Resultado do Tratamento
9.
Curr Stem Cell Res Ther ; 19(5): 688-699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37282640

RESUMO

In this review, we describe a new avenue that involves the therapeutic use of human adipose tissue. In the past two decades, thousands of papers have described the potential clinical use of human fat and adipose tissue. Moreover, mesenchymal stem cells have been a source of great enthusiasm in clinical studies, and these have generated curiosity at academic levels. On the other hand, they have created considerable commercial business opportunities. High expectations have emerged for curing some recalcitrant diseases or reconstructing anatomically defective human body parts, but several concerns have been raised by generating criticism on the clinical practice that have not been substantiated by rigorous scientific evidence. However, in general, the consensus is that human adipose-derived mesenchymal stem cells inhibit the production of inflammatory cytokines and stimulate the production of anti-inflammatory cytokines. Here, we show that the application of a mechanical elliptical force for several minutes to human abdominal fat activates anti-inflammatory properties and gene-related expression. This may pave the way for new unexpected clinical developments.


Assuntos
Tecido Adiposo , Doenças do Sistema Nervoso , Humanos , Tecido Adiposo/metabolismo , Anti-Inflamatórios , Citocinas/metabolismo
10.
Eur J Pharm Biopharm ; 188: 137-146, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196874

RESUMO

In this study, high energy ball milling and nano spray drying were used to prepare amorphous solid dispersions of bosentan in copovidone for the first time. In particular, the impact of this polymer on the bosentan amorphization kinetics was investigated. Copovidone was shown to facilitate the amorphization of bosentan upon ball milling. As a result, bosentan was dispersed in copovidone at the molecular level, forming amorphous solid dispersions, regardless of the ratio of the compounds. The similarity between the values of the adjustment parameter that describes the goodness of fit of the Gordon-Taylor equation to the experimental data (K = 1.16) and that theoretically calculated for an ideal mixture (K = 1.13) supported these findings. The kind of coprocessing method determined the powder microstructure and the release rate. The opportunity to prepare submicrometer-sized spherical particles using nano spray drying was an important advantage of this technology. Both coprocessing methods allowed the formation of long-lasting supersaturated bosentan solutions in the gastric environment with maximum concentrations reached ranging from four (11.20 µg/mL) to more than ten times higher (31.17 µg/mL) than those recorded when the drug was vitrified alone (2.76 µg/mL). Moreover, this supersaturation lasted for a period of time at least twice as long as that of the amorphous bosentan processed without copovidone (15 min vs. 30-60 min). Finally, these binary amorphous solid dispersions were XRD-amorphous for a year of storage under ambient conditions.


Assuntos
Pirrolidinas , Composição de Medicamentos/métodos , Bosentana , Solubilidade , Pirrolidinas/química
11.
Waste Manag ; 166: 35-45, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148780

RESUMO

Bamboo pulp and papermaking produce a lot of bamboo powder waste, and its resource utilization is of great significance for biomass refining and environmental protection. Here, we propose an integrated approach involving mechanical activation, hydrothermal extraction, and deep eutectic solvents (DESs) multiple delignification for the efficient separation of bamboo powder. Among seven carboxylic acids based DESs, choline chloride (ChCl)-lactic acid (La) DES (1:1) is the most effective, with over 78.0% lignin removal and 88.9% cellulose retained after mechanical-hydrothermal (180 °C, 5 h)-DES (110 °C, 12 h) treatment. Notably, 84.7% of delignification is achieved after three times of ChCl-La DES treatment at 70, 90, and 110 °C respectively. The delignification rate is negatively correlated with the amount of carboxyl group in the DESs. The lower the pKa value, the higher the delignification rate. Additionally, the selectivity for lignin is improved with decreasing solvent polarity. DES treatment effectively degrades the guaiacyl unit lignin fractions and disrupts several ß-aryl-ether bonds (e.g., ß-O-4, ß-ß, and ß-5). Furthermore, DESs exhibit good recyclability, with less than 10% reduction in delignification after three cycles. Theory calculations confirm that ChCl-carboxylic acid DESs could compete with lignin to break hydrogen bonds in lignocellulosic biomass by providing their chloride, hydroxyl, and carboxyl groups. Overall, this study demonstrates the practical significance of multistage treatment for the effective fractionation of biomass into its three components.


Assuntos
Celulose , Lignina , Lignina/química , Pós , Biomassa , Solventes/química , Ácido Láctico , Colina/química , Hidrólise
12.
Materials (Basel) ; 16(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37109794

RESUMO

Fly ash from coal represents the foremost waste product of fossil fuel combustion. These waste materials are most widely utilised in the cement and concrete industries, but the extent of their use is insufficient. This study investigated the physical, mineralogical, and morphological characteristics of non-treated and mechanically activated fly ash. The possibility of enhancing the hydration rate of the fresh cement paste by replacing part of the cement with non-treated and mechanically activated fly ash, and the hardened cement paste's structure and early compressive strength performance, were evaluated. At the first stage of the study, up to 20% mass of cement was replaced by untreated and mechanically activated fly ash to understand the impact of the mechanical activation on the hydration course; rheological properties, such as spread and setting time; hydration products; mechanical properties; and microstructure of fresh and hardened cement paste. The results show that a higher amount of untreated fly ash significantly prolongs the cement hydration process, decreases hydration temperature, deteriorates the structure and decreases compressive strength. Mechanical activation caused the breakdown of large porous aggregates in fly ash, enhancing the physical properties and reactivity of fly ash particles. Due to increased fineness and pozzolanic activity by up to 15%, mechanically activated fly ash shortens the time of maximum exothermic temperature and increases this temperature by up to 16%. Due to nanosized particles and higher pozzolanic activity, mechanically activated fly ash facilitates a denser structure, improves the contact zone between the cement matrix, and increases compressive strength up to 30%.

13.
Int J Biol Macromol ; 236: 123996, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907304

RESUMO

A novel starch-based model dough used to exploit staple foods was demonstrated to be feasible, which was based on damaged cassava starch (DCS) obtained by mechanical activation (MA). This study focused on the retrogradation behavior of starch dough and the feasibility of its application in functional gluten-free noodles. Starch retrogradation behavior was investigated by low field-nuclear magnetic resonance (LF-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), texture profile and resistant starch (RS) content analysis. During starch retrogradation, water migration, starch recrystallization and microstructure changes were observed. Short-term retrogradation could significantly alter the texture properties of starch dough, and long-term retrogradation promoted the formation of RS. The damage level influenced starch retrogradation, and damaged starch with the increasing damage level was beneficial to facilitate the starch retrogradation. Gluten-free noodles made from the retrograded starch had acceptable sensory quality, with darker color and better viscoelasticity than Udon noodles. This work provides a novel strategy for the proper utilization of starch retrogradation for the development of functional foods.


Assuntos
Manihot , Amido , Amido/química , Manihot/química , Alimentos , Armazenamento de Alimentos , Viscosidade
14.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837121

RESUMO

The present work reports the direct production of a high-entropy (HE) intermetallic CoNi0.3Fe0.3Cr0.15Al material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples. The interaction between the components during heating to 1600 °C of the mechanically activated mixtures and CS powders has been studied. It has been shown that the formation of the CoNi0.3Fe0.3Cr0.15Al phase occurs at 1370 °C through the formation of intermediate intermetallic phases (Al9Me2, AlCo, AlNi3) and their solid solutions, which coincidences well with thermodynamic calculations and solubility diagrams. Compression tests at room and elevated temperatures showed that the alloy obtained by the RSPS method has enhanced mechanical properties (σp = 2.79 GPa, σ0.2 = 1.82 GPa, ε = 11.5% at 400 °C) that surpass many known alloys in this system. High mechanical properties at elevated temperatures are provided by the B2 ordered phase due to the presence of impurity atoms and defects in the lattice.

15.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837268

RESUMO

Supplementary cementitious material (SCM) plays an important role in blended cement, and the effect of the particle size and morphology of siliceous supplementary cementitious material on hydration should not be ignored. In this study, 0.5 h and 1 h of wet grinding was applied to pretreat iron ore tailing powder (TP), and the divergence in pozzolanic behavior and morphology were investigated. Then, the treated TPs were used to replace the 30% cement contents in preparing blended cementitious paste, and the impact mechanism of morphology on performance was studied emphatically. M, the autogenous shrinkages of pastes were tested. Finally, hydration reaction kinetics was carried out to explore the hydration behavior, while X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the hydration product properties, respectively. Meanwhile, microscopy intrusion porosimetry (MIP) was also carried out to characterize the pore structures of hardened specimens. Results indicated that wet grinding has a dramatic effect on particle size and morphology, but hardly affects the phase assemblages and pozzolanic reactivity of TP, while the particle shape of TP changes from sub-circular to clavate and, finally, back to sub-circular. The results of hydration reaction kinetics, representing the morphology of particles, had a significant effect on hydration rate and total heat, and compared with the sub-circle one, the clavated particle could inhibit the hydration procedure. With the increasing grinding time, the compressive strength of cementitious paste was increased from 17.37% to 55.73%, and the micro-pore structure became denser; however, the autogenous shrinkage increased.

16.
Materials (Basel) ; 16(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36676339

RESUMO

Solid-phase synthesis of lithium-titanium ferrite by electron-beam heating of a Fe2O3-Li2CO3-TiO2 initial reagents mixture with different history (powder, compact, mechanically activated mixture) was studied using X-ray diffraction, thermomagnetometric and specific saturation magnetization analyses. Ferrite was synthesized using an ILU-6 pulsed electron accelerator; it generated electrons with electron energy of 2.4 MeV to heat samples to temperatures of 600 and 750 °C. The isothermal holding time upon reaching the synthesis temperature was 0-120 min. The efficiency of ferrite synthesis by electron-beam heating was evaluated via comparison of the characteristics of the obtained samples with those synthesized by conventional ceramic technology under similar temperature-time conditions. It was found that the rate of ferrite formation depends on the heating method, temperature, synthesis time, density, and activity of the initial mixture. It was shown that sample compaction provides the preferential formation of unsubstituted lithium ferrite of Li0.5Fe2.5O4 composition with a Curie temperature of at ca. 630 °C in both synthesis methods. High-energy electron-beam heating of the mechanically activated mixture significantly accelerates synthesis of Li0.6Fe2.2Ti0.2O4 substituted ferrite, for which the Curie temperature and specific saturation magnetization were recorded as 534 °C and 50 emu/g, respectively. Therefore, LiTi ferrites can be obtained at a lower temperature (750 °C) and with a shorter synthesis time (120 min) compared to traditional ceramic technology.

17.
Materials (Basel) ; 16(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676461

RESUMO

The significant containment of the global mining industry is caused by the problem of the transition to sustainable metal extraction and the integrated use of technogenic raw materials from the tailings of ore processing. The modeling of metal leaching processes using mechanical activation of polymetallic raw material components is particularly important in expanding the application of mining tailings as inert fillers of filling mixtures. This study is aimed at detecting the rotor speed factor on the chemical and mechanochemical effect of zinc yield growth from polymetallic tailings of the mining industry. In this regard, the purpose of this study was to improve the modeling of metal leaching processes using mechanical activation by improving the compositions of the filling mixtures. The methodology of the work included several comprehensive studies: the mechanical activation of tailings during zinc leaching from pulp in the DESI-11 disintegrator; the activation of enrichment tailings and the formation of a filling mass with different parameters of the component composition; the curing of cubic samples and their testing on the IP-1250 press. The Vi Improved text editor was used to prepare the algorithms for deterministic methods of three-dimensional interpolation in the Python language. The experimental results were graphically displayed using Gnuplot. The study of the agitation leaching of the waste obtained from the Sadonskiy mining district results in the fact that the NaCl mass concentration decreased from 13 to 1% and the H2SO4 concentration stabilization within 0.5 to 0.6% led to a 3-time increase in the zinc yield from the pulp, according to the polynomial law (from 28 to 91%). The obtained results expand the idea of the mechanism of the strength gain by the filling mass under mechanical activation on the components of the filling mixture, as well as changes in the efficiency of zinc leaching at different ratios of two types of lixiviants (sulphuric acid and sodium chloride) in the leaching solution.

18.
Sci Total Environ ; 860: 160529, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36574561

RESUMO

Fly ash (FA) is a solid, fine powder that constitutes a by-product obtained when coal, biomass, municipal solid waste or a mixture of these are combusted. This review article focuses on the mechanochemistry of coal fly ash (CFA), as well as highlights the issue of fly ash from municipal solid waste (MSW). In general, FA is regarded as a waste of public concern (since it contains hazardous components), which is primarily consumed in the construction industry, as well as in chemical synthesis and environmental engineering. However, the actual amount of FA recycled is still less than the amount produced, with the reuse rate of only up to 30 %. Due to its relatively low reactivity and heterogeneity, FA is commonly landfilled in huge quantities. Nevertheless, the physical and chemical properties of FA can be tailored, for example, by mechanical forces, ultimately leading to a higher value-added product. Currently, mechanochemistry (MC) is drawing attention in chemical synthesis, pollution remediation and waste management, especially as a possible solution for various drawbacks of conventional syntheses and processes. Mechanochemical processing of FA can be considered eco-friendly, inexpensive and efficient, in particular for processing tons of readily available fly ash already stored in ponds or landfills. With the aim of highlighting the hidden potential and facilitating the favorable use of FA, this article deals with FA as an environmentally challenging material, FA reactivity and recycling through mechanochemical processing, mechanochemical stabilization of heavy metals in FA, as well as up-to-date challenges for life cycle assessment (LCA) in evaluating FA-derived materials. Furthermore, all these full-potential aspects of FA mechanochemistry have not been addressed before, which is a valuable contribution to the existing literature.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/análise , Resíduos Sólidos/análise , Incineração , Metais Pesados/análise , Carvão Mineral , Carbono
19.
Waste Manag ; 155: 281-291, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403412

RESUMO

Carbothermal reduction of cathode materials is an effective method to selectively extract lithium carbonate, both mechanical activation and microwave heating can enhance thermal reduction of mixed electrode materials. However, the mechanism of enhanced lithium extraction has not been fully revealed. This study attempts to uncover the synergistic strengthening mechanisms of mechanical activation-microwave reduction from the aspects of material structure, dielectric properties, reduction kinetics and lithium recovery rate. Mechanical activation induces amorphization and structural defects. The enhanced dielectric properties of materials and the induced hotspots/arc plasmas are also responsible for the enhancement of the reduction reaction. The average dissociation activation energy in the activated sample is 18.0 kJ·mol-1, which is 20.3 kJ·mol-1 lower than that of unactivated sample. The model-free method reveals that the carbothermic reduction process can be divided into three stages: (I) initial stage (α < 0.4(0.6)): the activation energy gradually decreases with the formation of strong microwave acceptor-reduction products; (II) transitional stage (0.4(0.6) < α < 0.7): the increase in mass transfer resistance leads to gradual increase in activation energy. Mechanical activation shortens the transitional reaction stage; (III) later reaction stage (α > 0.7), the decrease in activation energy may be attributed to the enhanced microwave absorption and CO reduction. The model-fitting method reveals that after mechanical activation, the reaction kinetic changes from reaction-order model to Ginstling-Brounshtein diffusion model. The optimized lithium extraction process parameters were: activation 300 rpm for 1.5 h, reduction temperature 550 °C. The research results can provide theoretical support for the enhanced extraction of cathode materials.

20.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365652

RESUMO

In the present study, the tribological behavior of polytetrafluoroethylene (PTFE) composites filled with natural layered silicates (LS) was investigated. The change in the morphology of the friction surface of composites depending on the content and chemical composition of layered silicates has been shown. The friction surface of PTFE composites with layered silicates was investigated by scanning electron microscopy (SEM). The formation on the friction surface of a special layer with a structure different from the bulk of the polymer, which is formed from particles of fillers and wear products, has been established. The thickness of this layer is independent of the content of layered silicates in the polymer. It was indicated that wear debris of PTFE composites was assembled during friction and uniformly cover the friction surface layer by layer, thereby forming a protective layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA