RESUMO
We have previously reported that the subfornical organ (SFO) does not contribute to the chronic hypertensive response to DOCA-salt in rats, and yet the organum vasculosum of the lamina terminalis (OVLT) plays a significant role in the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Since efferent fibers of the OVLT project to and through the median preoptic nucleus (MnPO), the present study was designed to test the hypothesis that the MnPO is necessary for DOCA-salt hypertension in the rat. Male Sprague-Dawley rats underwent SHAM (MnPOsham; n = 5) or electrolytic lesion of the MnPO (MnPOx; n = 7) followed by subsequent unilateral nephrectomy and telemetry instrumentation. After recovery and during the experimental protocol, rats consumed a 0.1% NaCl diet and 0.9% NaCl drinking solution. Mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg/rat; SQ). The chronic pressor response to DOCA was attenuated in MnPOx rats by Day 11 of treatment and continued such that MAP increased 25 ± 3 mmHg in MnPOsham rats by Day 21 of DOCA compared to 14 ± 3 mmHg in MnPOx rats. These results support the hypothesis that the MnPO is an important brain site of action and necessary for the full development of DOCA-salt hypertension in the rat.
Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Área Pré-Óptica , Ratos Sprague-Dawley , Animais , Masculino , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/etiologia , Ratos , Cloreto de Sódio na Dieta/efeitos adversos , Pressão Sanguínea/efeitos dos fármacosRESUMO
There has been an explosion recently in our understanding of the neuronal populations in the preoptic area involved in thermoregulation of mice. Recent studies have identified several genetically specified populations of neurons predominantly in the median preoptic nucleus (MnPO) but spreading caudolaterally into the preoptic area that regulate body temperature. . These include warm-responsive neurons that express the peptides PACAP, BDNF, or QRFP; and receptors for temperature, leptin, estrogen, or prostaglandin E2 (PGE2). These neurons are predominantly glutamatergic and driving them opto- or chemogenetically can cause profound hypothermia, and in some cases, periods of torpor or a hibernation-like state. Conversely, fever response is likely to depend upon inhibiting the activity of these neurons through the PGE2 receptor EP3. Another cell group, the Brs3-expressing MnPO neurons, are apparently cold-responsive and cause increases in body temperature. MnPO-QRFP neurons cause hypothermia via activation of their terminals in the region of the dorsomedial nucleus of the hypothalamus (DMH). As the MnPO-QRFP neurons are essentially glutamatergic, and the DMH largely uses glutamatergic projections to the raphe pallidus to increase body temperature, this model suggests the existence of local inhibitory interneurons in the DMH region between the MnPO-QRFP glutamatergic neurons that cause hypothermia and the DMH glutamatergic neurons that cause hyperthermia. The new genetically targeted studies in mice provide a way to identify the precise neuronal circuitry that is responsible for our physiological observations in this species, and will suggest critical experiments that can be undertaken to compare these with the thermoregulatory circuitry in other species.
RESUMO
Previous studies suggest that the median preoptic nucleus (MnPO) of the hypothalamus plays an important role in regulating the wake-sleep cycle and, in particular, homeostatic sleep drive. However, the precise cellular phenotypes, targets, and central mechanisms by which the MnPO neurons regulate the wake-sleep cycle remain unknown. Both excitatory and inhibitory MnPO neurons innervate brain regions implicated in sleep promotion and maintenance, suggesting that both cell types may participate in sleep control. Using genetically targeted approaches, we investigated the role of the MnPO GABAergic (MnPOVgat) and glutamatergic (MnPOVglut2) neurons in modulating wake-sleep behavior of mice. We found that both neuron populations differentially participate in wake-sleep control, with MnPOVgat neurons being involved in sleep homeostasis and MnPOVglut2 neurons facilitating sleep during allostatic (stressful) challenges.
Assuntos
Ácido Glutâmico , Área Pré-Óptica , Animais , Ácido Glutâmico/metabolismo , Camundongos , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Ácido gama-Aminobutírico/metabolismoRESUMO
Gonadal steroids and gender are risk factors for sleep disruptions and insomnia in women. However, the relationship between ovarian steroids and sleep is poorly understood. In rodent models, estradiol (E2) suppresses sleep in females suggesting that E2 may reduce homeostatic sleep need. The current study investigates whether E2 decreases sleep need and the potential mechanisms that govern E2 suppression of sleep. Our previous findings suggest that the median preoptic nucleus (MnPO) is a key nexus for E2 action on sleep. Using behavioral, neurochemical, and pharmacological approaches, we tested whether (1) E2 influenced the sleep homeostat and (2) E2 influenced adenosine signaling in the MnPO of adult female rats. In both unrestricted baseline sleep and recovery sleep from 6-h sleep deprivation, E2 significantly reduced nonrapid eye movement (NREM) sleep-delta power, NREM-slow wave activity (NREM-SWA, 0.5-4.0 Hz), and NREM-delta energy suggesting that E2 decreases homeostatic sleep need. However, coordinated with E2-induced changes in physiological markers of homeostatic sleep was a marked increase in MnPO extracellular adenosine (a molecular marker of homeostatic sleep need) during unrestricted and recovery sleep in E2-treated but not oil control animals. While these results seemed contradictory, systemically administered E2 blocked the ability of CGS-21680 (adenosine A2A receptor agonist) microinjected into the MnPO to increase NREM sleep suggesting that E2 may block adenosine signaling. Together, these findings provide evidence that E2 may attenuate the local effects of the A2A receptors in the MnPO, which in turn may underlie estrogenic suppression of sleep behavior as well as changes in homeostatic sleep need.
Assuntos
Estradiol , Movimentos Oculares , Animais , Eletroencefalografia , Estradiol/farmacologia , Feminino , Ratos , Sono/fisiologia , Privação do Sono/complicaçõesRESUMO
The majority of women experience vasomotor symptoms (VMS), such as hot flashes and night sweats, during the menopausal transition. Recent evidence strongly suggests a connection between neurokinin 3 (NK3) receptor signaling and VMS associated with menopause. The NK3 receptor antagonist fezolinetant is currently in phase 3 development for treatment of moderate to severe VMS associated with menopause. We investigated the pharmacological effects of repeated administration of fezolinetant on levels of sex hormones and gonadotropins, neuronal activity in the hypothalamus, and skin temperature as an index of hot flash-like symptoms in ovariectomized rats as a model of menopause. Ovariectomized rats exhibited several typical menopausal symptoms: hyperphagia, increased body weight, significantly decreased plasma estradiol levels, increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and significantly increased skin temperature. Increased c-Fos expression (an indirect marker of neuronal activity) in median preoptic nucleus (MnPO) hypothalamic neurons was also observed in ovariectomized rats. Repeated oral administration of fezolinetant (1-10 mg/kg, twice daily) for 1 week dose-dependently reduced plasma LH levels without affecting estradiol or FSH levels, inhibited the activation of MnPO neurons, and attenuated hot flash-like symptoms. In addition, fezolinetant dose-dependently reduced hyperphagia and weight gain in ovariectomized rats. These preclinical findings suggest that fezolinetant attenuates hot flash-like symptoms via inhibition of neuronal activity in the MnPO of ovariectomized rats and provides further support for the ongoing clinical development of fezolinetant for the treatment of VMS associated with menopause.
Assuntos
Compostos Heterocíclicos com 2 Anéis/farmacologia , Fogachos/tratamento farmacológico , Receptores da Neurocinina-3/antagonistas & inibidores , Tiadiazóis/farmacologia , Administração Oral , Animais , Temperatura Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Fogachos/etiologia , Injeções Subcutâneas , Hormônio Luteinizante/sangue , Menopausa/efeitos dos fármacos , Ovariectomia/efeitos adversos , Área Pré-Óptica/metabolismo , Progesterona/sangue , Ratos Wistar , Temperatura Cutânea/efeitos dos fármacos , Testosterona/sangue , Tiadiazóis/administração & dosagemRESUMO
In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.
RESUMO
Blood pressure is controlled by endocrine, autonomic, and behavioral responses that maintain blood volume and perfusion pressure at levels optimal for survival. Although it is clear that central angiotensin type 1a receptors (AT1aR; encoded by the Agtr1a gene) influence these processes, the neuronal circuits mediating these effects are incompletely understood. The present studies characterize the structure and function of AT1aR neurons in the lamina terminalis (containing the median preoptic nucleus and organum vasculosum of the lamina terminalis), thereby evaluating their roles in blood pressure control. Using male Agtr1a-Cre mice, neuroanatomical studies reveal that AT1aR neurons in the area are largely glutamatergic and send projections to the paraventricular nucleus of the hypothalamus (PVN) that appear to synapse onto vasopressin-synthesizing neurons. To evaluate the functionality of these lamina terminalis AT1aR neurons, we virally delivered light-sensitive opsins and then optogenetically excited or inhibited the neurons while evaluating cardiovascular parameters or fluid intake. Optogenetic excitation robustly elevated blood pressure, water intake, and sodium intake, while optogenetic inhibition produced the opposite effects. Intriguingly, optogenetic excitation of these AT1aR neurons of the lamina terminalis also resulted in Fos induction in vasopressin neurons within the PVN and supraoptic nucleus. Further, within the PVN, selective optogenetic stimulation of afferents that arise from these lamina terminalis AT1aR neurons induced glutamate release onto magnocellular neurons and was sufficient to increase blood pressure. These cardiovascular effects were attenuated by systemic pretreatment with a vasopressin-1a-receptor antagonist. Collectively, these data indicate that excitation of lamina terminalis AT1aR neurons induces neuroendocrine and behavioral responses that increase blood pressure.SIGNIFICANCE STATEMENT Hypertension is a widespread health problem and risk factor for cardiovascular disease. Although treatments exist, a substantial percentage of patients suffer from "drug-resistant" hypertension, a condition associated with increased activation of brain angiotensin receptors, enhanced sympathetic nervous system activity, and elevated vasopressin levels. The present study highlights a role for angiotensin Type 1a receptor expressing neurons located within the lamina terminalis in regulating endocrine and behavioral responses that are involved in maintaining cardiovascular homeostasis. More specifically, data presented here reveal functional excitatory connections between angiotensin-sensitive neurons in the lamina terminals and vasopressin neurons in the paraventricular nucleus of the hypothalamus, and further indicate that activation of this circuit raises blood pressure. These neurons may be a promising target for antihypertensive therapeutics.
Assuntos
Angiotensinas/farmacologia , Arginina Vasopressina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores de Vasopressinas/efeitos dos fármacos , Sódio na DietaRESUMO
Neurotensin (NTS) is a neuropeptide acting as a neuromodulator in the brain and is a very potent hypothermic agent. However, the cellular mechanisms of actions are not fully understood. Here we report that NTS increases the firing rate of preoptic GABAergic neurons by activating both neurotensin receptor 1 (NTSR1) and neurotensin receptor 2 (NTSR2), expressed by neurons and astrocytes, respectively. Downstream of NTSR1 the neuropeptide activated an inward current, calcium release from intracellular stores and, postsynaptically, increased frequency and amplitude of inhibitory synaptic events. NTSR2 activation in astrocytes resulted in increased excitatory input in preoptic GABAergic neurons, an effect which was dependent upon the activation of P2X4 receptors. We also found that neuromedin N acted as a selective agonist at the NTSR1. Surprisingly, activation of both NTSR1 and NTSR2 in the median preoptic nucleus was required for activating a full hypothermic response.
Assuntos
Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Neurotensina , Área Pré-Óptica/efeitos dos fármacos , Receptores de Neurotensina/agonistas , Animais , Astrócitos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Técnicas de Patch-Clamp , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Neurotensina/genética , Receptores Purinérgicos P2X4/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologiaRESUMO
Fever is a common phenomenon during infection or inflammatory conditions. This stereotypic rise in body temperature (Tb) in response to inflammatory stimuli is a result of autonomic responses triggered by prostaglandin E2 action on EP3 receptors expressed by neurons in the median preoptic nucleus (MnPOEP3R neurons). To investigate the identity of MnPOEP3R neurons, we first used in situ hybridization to show coexpression of EP3R and the VGluT2 transporter in MnPO neurons. Retrograde tracing showed extensive direct projections from MnPOVGluT2 but few from MnPOVgat neurons to a key site for fever production, the raphe pallidus. Ablation of MnPOVGluT2 but not MnPOVgat neurons abolished fever responses but not changes in Tb induced by behavioral stress or thermal challenges. Finally, we crossed EP3R conditional knock-out mice with either VGluT2-IRES-cre or Vgat-IRES-cre mice and used both male and female mice to confirm that the neurons that express EP3R and mediate fever are glutamatergic, not GABAergic. This finding will require rethinking current concepts concerning the central thermoregulatory pathways based on the MnPOEP3R neurons being GABAergic.SIGNIFICANCE STATEMENT Body temperature is regulated by the CNS. The rise of the body temperature, or fever, is an important brain-orchestrated mechanism for fighting against infectious or inflammatory disease, and is tightly regulated by the neurons located in the median preoptic nucleus (MnPO). Here we demonstrate that excitatory MnPO neurons mediate fever and examine a potential central circuit underlying the development of fever responses.
Assuntos
Febre/fisiopatologia , Ácido Glutâmico , Inflamação/fisiopatologia , Neurônios , Área Pré-Óptica/fisiopatologia , Receptores de Prostaglandina E Subtipo EP3 , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Feminino , Febre/induzido quimicamente , Globo Pálido/fisiopatologia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Vias Neurais/fisiopatologia , Área Pré-Óptica/citologia , Estresse Psicológico , Proteína Vesicular 2 de Transporte de Glutamato/genéticaRESUMO
Experiments were done to investigate the role of glutamatergic systems in the median preoptic nucleus (MnPO) in the water ingestion induced by administration of angiotensin II (ANG II) in the subfornical organ (SFO) in the awake rat. Microdialysis methods were utilized to quantify the extracellular content of glutamate (Glu) in the region of MnPO. Microinjection of ANG II (10-10 M) into the SFO significantly increased the release of Glu in the MnPO in the rats under the condition that water is available for drinking and the rats under the condition that water is not available for drinking. The amount of initial maximal increases in the Glu levels elicited by the ANG II injection was quite similar in drinking and non-drinking rats, whereas the duration of the response was much longer in non-drinking than in drinking rats. The amount of water ingestion in 20 min immediately after the ANG II injection was significantly enhanced by previous injections of N-methyl-D-aspartate (NMDA, 10 µM) into the MnPO, while the ANG II-induced water ingestion was attenuated by pretreatment with the NMDA antagonist dizocilpine (MK-801, 10 µM). The amount of water intake elicited by the ANG II injection into the SFO was enhanced by previous injections of either the non-NMDA agonist kainic acid (KA, 50 µM) or quisqualic acid (QA, 50 µM) into the MnPO. On the contrary, the ANG II-induced drinking response was diminished by pretreatment with the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 µM) in the MnPO. Each injection of NMDA, KA, and QA into the MnPO produced drinking behavior. These results imply that the glutamatergic neural pathways to the MnPO may transmit the information for eliciting drinking in response to ANG II acting at the SFO. Our data further provide evidence that the ANG II-induced dipsogenic response may be mediated through both NMDA and non-NMDA glutamatergic receptor mechanisms in the MnPO.
Assuntos
Angiotensina II/farmacologia , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Água Potável/metabolismo , Ácido Glutâmico/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Órgão Subfornical/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Masculino , Ratos , Ratos WistarRESUMO
Sleep in mammals is accompanied by a decrease in core body temperature (CBT). The circadian clock in the hypothalamic suprachiasmatic nucleus regulates daily rhythms in both CBT and arousal states, and these rhythms are normally coupled. Reductions in metabolic heat production resulting from behavioral quiescence and reduced muscle tone along with changes in autonomic nervous system activity and thermoeffector activity contribute to the sleep-related fall in CBT. Reductions in sympathetic tone to the peripheral vasculature resulting in heat loss through the skin are reflected in a sleep-related increase in distal skin temperature that is a prominent feature of sleep onset in humans. Within a sleep episode, patterns of autonomic nervous system and thermoeffector activity and the ability to defend against heat and cold exposure differ during nonrapid eye movement (NREM) and rapid eye movement sleep. Anatomic and functional integration of the control of arousal states and thermoregulation occur in the preoptic/anterior hypothalamus. Subsets or warm-sensing neurons in the preoptic/anterior hypothalamus implicated in CBT regulation are spontaneously activated during sleep onset and NREM sleep compared to waking and may underlie sleep-related changes in autonomic nervous system and thermoeffector activity.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Sono/fisiologia , Animais , HumanosRESUMO
The median preoptic nucleus (MnPO) is an integrative site involved in body fluid homeostasis, cardiovascular control, thermoregulation, and sleep homeostasis. Angiotensin II (ANG II), a neuropeptide shown to have excitatory effects on MnPO neurons, is of particular interest with regard to its role in body fluid homeostasis and cardiovascular control. The present study investigated the role of angiotensin type 1a (AT1a) receptor activation on neuronal excitability in the MnPO. Male Sprague-Dawley rats were infused with an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. In vitro loose-patch voltage-clamp recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. Additionally, tissue punches from MnPO were taken to asses mRNA and protein expression. AT1a receptor knockdown neurons were insensitive to ANG II and showed a marked reduction in GABAA-mediated inhibition. The reduction in GABAA-mediated inhibition was not associated with reductions in mRNA or protein expression of GABAA ß-subunits. Knockdown of the AT1a receptor was associated with a reduction in the potassium-chloride cotransporter KCC2 mRNA as well as a reduction in pS940 KCC2 protein. The impaired GABAA-mediated inhibition in AT1a knockdown neurons was recovered by bath application of phospholipase C and protein kinase C activators. The following study indicates that AT1a receptor activation mediates the excitability of MnPO neurons, in part, through the regulation of KCC2. The regulation of KCC2 influences the intracellular [Cl-] and the subsequent efficacy of GABAA-mediated currents.
Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Simportadores/metabolismo , Potenciais de Ação/fisiologia , Animais , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Cotransportadores de K e Cl-RESUMO
Recent experiments using optogenetic tools allow the identification and functional analysis of thirst neurons and vasopressin producing neurons. Two major advances provide a detailed anatomy of taste for water and arginine-vasopressin (AVP) release: (1) thirst and AVP release are regulated not only by the classical homeostatic, intero-sensory plasma osmolality negative feedback, but also by novel, extero-sensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release converge on the same homeostatic neurons of circumventricular organs that monitor the composition of the blood; (2) acid-sensing taste receptor cells (which express polycystic kidney disease 2-like 1 protein) on the tongue that were previously suggested as the sour taste sensors also mediate taste responses to water. The tongue has a taste for water. The median preoptic nucleus (MnPO) of the hypothalamus could integrate multiple thirst-generating stimuli including cardiopulmonary signals, osmolality, angiotensin II, oropharyngeal and gastric signals, the latter possibly representing anticipatory signals. Dehydration is aversive and MnPO neuron activity is proportional to the intensity of this aversive state.
Assuntos
Arginina Vasopressina/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Sede/fisiologia , Animais , Desidratação , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Homeostase , Humanos , PaladarRESUMO
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Assuntos
Encéfalo/imunologia , Febre/etiologia , Febre/imunologia , Inflamação/complicações , Inflamação/fisiopatologia , Animais , Encéfalo/irrigação sanguínea , Humanos , Modelos BiológicosRESUMO
The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vasculosum of the lamina terminalis (OVLT) and median preoptic nucleus (MnPO). We then identify molecularly defined cell types within the OVLT and MnPO that are activated by fluid imbalance and show that stimulation of these neurons is sufficient to drive drinking, cardiovascular responses, and negative reinforcement. Finally, we demonstrate that the thirst signal exits these regions through at least three parallel pathways and show that these projections dissociate the cardiovascular and behavioral responses to fluid imbalance. These findings reveal a distributed thirst circuit that motivates drinking by the common mechanism of drive reduction.
Assuntos
Comportamento de Ingestão de Líquido/fisiologia , Motivação , Prosencéfalo/fisiologia , Reforço Psicológico , Sede/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Neurônios/fisiologia , Optogenética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Área Pré-Óptica/fisiologia , Prosencéfalo/citologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Órgão Subfornical/fisiologiaRESUMO
Numerous data show a reciprocal interaction between REM sleep and thermoregulation. During REM sleep, the function of thermoregulation appears to be impaired; from the other hand, the tonic activation of thermogenesis, such as during cold exposure, suppresses REM sleep occurrence. Recently, both the central neural network controlling REM sleep and the central neural network controlling thermoregulation have been progressively unraveled. Thermoregulation was shown to be controlled by a central "core" circuit, responsible for the maintenance of body temperature, modulated by a set of accessory areas. REM sleep was suggested to be controlled by a group of hypothalamic neurons overlooking at the REM sleep generating circuits within the brainstem. The two networks overlap in a few areas, and in this review, we will suggest that in such overlap may reside the explanation of the reciprocal interaction between REM sleep and thermoregulation. Considering the peculiar modulation of thermoregulation by REM sleep the result of their coincidental evolution, REM sleep may therefore be seen as a period of transient heterothermy.
RESUMO
Fever occurs upon binding of prostaglandin E2 (PGE2) to EP3 receptors in the median preoptic nucleus of the hypothalamus, but the origin of the pyrogenic PGE2 has not been clearly determined. Here, using mice of both sexes, we examined the role of local versus generalized PGE2 production in the brain for the febrile response. In wild-type mice and in mice with genetic deletion of the prostaglandin synthesizing enzyme cyclooxygenase-2 in the brain endothelium, generated with an inducible CreERT2 under the Slco1c1 promoter, PGE2 levels in the CSF were only weakly related to the magnitude of the febrile response, whereas the PGE2 synthesizing capacity in the hypothalamus, as reflected in the levels of cyclooxygenase-2 mRNA, showed strong correlation with the immune-induced fever. Histological analysis showed that the deletion of cyclooxygenase-2 in brain endothelial cells occurred preferentially in small- and medium-sized vessels deep in the brain parenchyma, such as in the hypothalamus, whereas larger vessels, and particularly those close to the neocortical surface and in the meninges, were left unaffected, hence leaving PGE2 synthesis largely intact in major parts of the brain while significantly reducing it in the region critical for the febrile response. Furthermore, injection of a virus vector expressing microsomal prostaglandin E synthase-1 (mPGES-1) into the median preoptic nucleus of fever-refractive mPGES-1 knock-out mice, resulted in a temperature elevation in response to LPS. We conclude that the febrile response is dependent on local release of PGE2 onto its target neurons and not on the overall PGE2 production in the brain.SIGNIFICANCE STATEMENT By using mice with selective deletion of prostaglandin synthesis in brain endothelial cells, we demonstrate that local prostaglandin E2 (PGE2) production in deep brain areas, such as the hypothalamus, which is the site of thermoregulatory neurons, is critical for the febrile response to peripheral inflammation. In contrast, PGE2 production in other brain areas and the overall PGE2 level in the brain do not influence the febrile response. Furthermore, partly restoring the PGE2 synthesizing capacity in the anterior hypothalamus of mice lacking such capacity with a lentiviral vector resulted in a temperature elevation in response to LPS. These data imply that the febrile response is dependent on the local release of PGE2 onto its target neurons, possibly by a paracrine mechanism.
Assuntos
Regulação da Temperatura Corporal/imunologia , Dinoprostona/biossíntese , Dinoprostona/imunologia , Febre/imunologia , Hipotálamo/imunologia , Inflamação/imunologia , Animais , Feminino , Febre/etiologia , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
The present study was carried out to investigate whether glutamatergic receptor mechanisms modulate the release of noradrenaline (NA) in the region of the median preoptic nucleus (MnPO) using intracerebral microdialysis techniques in freely moving rats. Perfusion of N-methyl-d-asparatate (NMDA, 10 and 50µM) through the microdialysis probe significantly enhanced dialysate NA concentration in the region of the MnPO. Local perfusion of the NMDA antagonist dizocilpine (MK801, 10 and 50µM) did not change the basal release of NA in the MnPO area. MK801 (10µM) administered together with NMDA antagonized the stimulant effect of NMDA (50µM). Perfusion of the non-NMDA agonist quisqualic acid (QA, 10 and 50µM) or kainic acid (KA, 10 and 50µM) significantly increased the NA release in the MnPO area. Perfusion of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 and 50µM) had no effect on the NA release. CNQX (10µM) administered together with either QA (50µM) or KA (50µM) in the MnPO area prevented the stimulant effect of the agonists on the NA release. Nonhypotensive hypovolemia following subcutaneous injections of polyethylene glycol (PEG, 30%, 5ml) significantly elevated the NA level in the MnPO area. The PEG-induced elevation in the NA release was attenuated by perfusion of either MK801 (10µM) or CNQX (10µM). The present results suggest that glutamatergic synaptic inputs may act to enhance the release of NA in the MnPO area through both NMDA and non-NMDA receptors, and imply that these glutamatergic receptor mechanisms may be involved in the noradrenergic reguratory system for the body fluid balance.
Assuntos
Ácido Glutâmico/fisiologia , Norepinefrina/metabolismo , Área Pré-Óptica/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/administração & dosagem , Animais , Maleato de Dizocilpina/administração & dosagem , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ácido Caínico/administração & dosagem , Masculino , Microdiálise , N-Metilaspartato/administração & dosagem , Ácido Quisquálico/administração & dosagem , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Sustained hypertension is an important consequence of obstructive sleep apnea. An animal model of the hypoxemia associated with sleep apnea, chronic intermittent hypoxia (CIH), produces increased sympathetic nerve activity (SNA) and sustained increases in blood pressure. Many mechanisms have been implicated in the hypertension associated with CIH, including the role of ΔFosB within the median preoptic nucleus (MnPO). Also, the renin-angiotensin system (RAS) has been associated with CIH hypertension. We conducted experiments to determine the possible association of FosB/ΔFosB with a RAS component, angiotensin-converting enzyme 1 (ACE1), within the MnPO following 7 days of CIH. Retrograde tract tracing from the paraventricular nucleus (PVN), a downstream region of the MnPO, was used to establish a potential pathway for FosB/ΔFosB activation of MnPO ACE1 neurons. After CIH, ACE1 cells with FosB/ΔFosB expression increased colocalization with a retrograde tracer that was injected unilaterally within the PVN. Also, Western blot examination showed ACE1 protein expression increasing within the MnPO following CIH. Chromatin immunoprecipitation (ChIP) assays demonstrated an increase in FosB/ΔFosB association with the ACE1 gene within the MnPO following CIH. FosB/ΔFosB may transcriptionally target ACE1 within the MnPO following CIH to affect the downstream PVN region, which may influence SNA and blood pressure.
Assuntos
Hipóxia/fisiopatologia , Neurônios/enzimologia , Peptidil Dipeptidase A/metabolismo , Área Pré-Óptica/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Previous reports indicate that overexpression of copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2 (â¢-) ) scavenging enzyme, in the brain subfornical organ improves cardiac function in a mouse model of heart failure (HF). A downstream hypothalamic site, the MnPO, may act as a relay centre for O2 (â¢-) to serve as a mediator in the pathophysiology of HF. To test the hypothesis that elevated O2 (â¢-) in the MnPO contributes to the pathophysiology of HF and decreased cardiac function, we injected adenovirus encoding CuZnSOD (AdCuZnSOD, n=7) or control empty adenovirus vector (AdEmpty, n=7) into the MnPO of normal rats. Subsequently, rats were subjected to coronary artery ligation to create a myocardial infarct (MI) of the left ventricle. Cardiac function was monitored via echocardiography. Upon completion, rat brains were examined for CuZnSOD expression in MnPO via immunofluorescence and histopathological analyses of cardiac infarct size were conducted. Baseline (EF) ejection fractions (%) of AdCuZnSOD and AdEmpty rats were 73 ± 1 and 71 ± 1, respectively. Two weeks after MI, EF was significantly decreased in both groups of rats (AdCuZnSOD: 51 ± 3, AdEmpty: 46 ± 1). In contrast, by 4 weeks post MI, EF had improved to 64 ± 2 in AdCuZnSOD rats, yet was only 52 ± 1 in AdEmpty rats, and this was accompanied by lower plasma noradrenaline levels in AdCuZnSOD rats (0.49 ± 0.19 ng/mL) compared to AdEmpty rats (1.20 ± 0.32 ng/mL). In conclusion, despite decreases in EF early after MI, overexpression of CuZnSOD in the MnPO was related to an improvement in left ventricular function and concomitant decreased plasma noradrenaline levels 4 weeks post MI.