Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961768

RESUMO

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Assuntos
Retículo Endoplasmático , Tylenchoidea , Animais , Retículo Endoplasmático/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Imunidade Vegetal , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia , Interações Hospedeiro-Parasita
2.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992595

RESUMO

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/genética , Arabidopsis/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transdução de Sinais , Resistência à Doença/genética , Luz , Regulação da Expressão Gênica de Plantas , Transdução de Sinal Luminoso
3.
J Agric Food Chem ; 72(28): 15512-15522, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959331

RESUMO

Root-knot nematodes pose a serious threat to crops by affecting production and quality. Over a period of time, substantial work has been done toward the development of effective and environmentally benign nematicidal compounds. However, due to the inefficiencies of previously reported synthetics in achieving the target of safe, selective, and effective treatment, it is necessary to develop new efficacious and safer nematicidal agents considering human health and environment on top priority. This work aims to highlight the efficient and convenient l-proline catalyzed synthesis of pyrano[3,2-c]pyridone and their use as potential nematicidal agents. In vitro results of larval mortality and egg hatching inhibition revealed maximum nematicidal activity against Meloidogyne incognita from compounds 15b, 15m, and 15w with LC50 values of 28.8, 46.8, and 49.18 µg/mL at 48 h, respectively. Under similar conditions, pyrano[3,2-c]pyridones derivatives 15b (LC50 = 28.8 µg/mL) was found at par with LC50 (26.92 µg/mL) of commercial nematicide carbofuran. The in vitro results were further validated with in silico studies with the most active compound 15b nematicidal within the binding to the pocket of acetylcholine esterase (AChE). In docking, binding free energy values for compound 15b were found to be -6.90 kcal/mol. Results indicated that pyrano[3,2-c]pyridone derivatives have the potential to control M. incognita.


Assuntos
Antinematódeos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Piridonas , Tylenchoidea , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/farmacologia , Antinematódeos/química , Antinematódeos/síntese química , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Relação Estrutura-Atividade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Estrutura Molecular
4.
Plant Cell Rep ; 43(7): 178, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907748

RESUMO

KEY MESSAGE: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.


Assuntos
Doenças das Plantas , Plantas Geneticamente Modificadas , Interferência de RNA , Solanum melongena , Tylenchoidea , Animais , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia , Solanum melongena/genética , Solanum melongena/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Parasita/genética
5.
Plant Pathol J ; 40(3): 261-271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835297

RESUMO

Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CSCu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

6.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789940

RESUMO

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Assuntos
Raízes de Plantas , Tumores de Planta , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Animais , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Tumores de Planta/parasitologia , Doenças das Plantas/parasitologia , Sacarose/metabolismo , Açúcares/metabolismo , Metabolismo dos Carboidratos
7.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776824

RESUMO

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Assuntos
Resistência à Doença , Flavonoides , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Flavonoides/metabolismo , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Hypocreales/metabolismo , Resistência Sistêmica Adquirida da Planta
8.
Plant Dis ; 108(5): 1252-1260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709560

RESUMO

Strategies for plant nutrient resource allocation under Meloidogyne spp. infection and different soil nutrient conditions are not well established. In response, the objectives of this research are to determine if increased vegetative growth of Solanum lycopersicon var. cerasiforme (cherry tomato) under high nutrition enhances resistance to M. incognita and whether adaptive strategies for growth, reproduction, and nutrient uptake by cherry tomato infected with M. incognita alter nutrient availability. The study was conducted under greenhouse conditions using high, medium, and low soil nutrient regimes. The research results indicate that the total biomass of cherry tomato was less in the presence of M. incognita infection under all three nutrient conditions, compared with plants grown in the absence of this nematode. However, the increase in the root/shoot ratio indicates that cherry tomato allocated more resources to belowground organs. Under the combined impacts of M. incognita infection and low or medium soil nutrition, the nitrogen content in root system tissues and the phosphorus content in shoot system tissues were increased to meet the nutrient requirements of galled root tissue and plant fruit production. It is suggested that plants increase the allocation of reproductive resources to fruits by improving phosphorus transportation to the aboveground reproductive tissues under low and medium nutrient conditions. Overall, the study highlights a significant impact of soil nutrient levels on the growth and resource allocation associated with M. incognita-infected cherry tomato. In response, soil nutrient management is another practice for reducing the impacts of plant-parasitic nematodes on crop production.


Assuntos
Doenças das Plantas , Raízes de Plantas , Solo , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Solanum lycopersicum/parasitologia , Animais , Solo/química , Solo/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Nitrogênio/metabolismo , Biomassa , Fósforo/metabolismo , Fósforo/análise
9.
Int J Biol Macromol ; 269(Pt 2): 132131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719017

RESUMO

Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.


Assuntos
Antinematódeos , Quitosana , Oligossacarídeos , Sulfonamidas , Tylenchoidea , Quitosana/química , Quitosana/farmacologia , Animais , Tylenchoidea/efeitos dos fármacos , Antinematódeos/farmacologia , Antinematódeos/química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Relação Estrutura-Atividade , Larva/efeitos dos fármacos
10.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692851

RESUMO

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Assuntos
Hypocreales , Controle Biológico de Vetores , Doenças das Plantas , Raízes de Plantas , Microbiologia do Solo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitologia , Animais , Tylenchoidea/fisiologia , Raízes de Plantas/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Hypocreales/fisiologia , Solo/parasitologia
11.
J Fungi (Basel) ; 10(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38667936

RESUMO

The biocontrol agent Pythium oligandrum, which is a member of the phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum strain CBS530.74, for the control of an RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced their attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, the P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, the P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). A transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested a modulation of the plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect, including the direct inhibition of M. incognita, the potential priming of tomato plant defenses, and plant growth promotion.

12.
Front Microbiol ; 15: 1385255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638906

RESUMO

Chemical study of the nematicidal biocontrol fungus Pochonia chlamydosporia PC-170 led to discovery of six resorcylic acid lactones (RALs), including three nematicidal glycosylated RALs, monocillin VI glycoside (1), colletogloeolactone A (2) and monocillin II glycoside (3), and three antibacterial non-glycosylated RALs, monocillin VI (4), monocillin IV (5) and monocillin II (6). The planar structure of the new compound monocillin VI glycoside (1) was elucidated using HRESIMS and NMR data, and its monosaccharide configuration was further determined through sugar hydrolysis experiment and GC-MS analysis method. Furthermore, their two biosynthetic-related PKS genes, pchE and pchI, were identified through the gene knockout experiment. The glycosylated RALs 1-3 exhibited nematicidal activity against Meloidogyne incognita, with LC50 values of 94, 152 and 64 µg/mL, respectively, and thus had great potential in the development of new nematicidal natural products to control M. incognita in the future.

13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
14.
Biology (Basel) ; 13(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38666879

RESUMO

Pumpkins (Cucurbita moschata), valued for their nutritional, medicinal, and economic significance, face threats from Meloidogyne incognita, a critical plant-parasitic nematode. This study extensively examines the impact of M. incognita on the growth, physiological, and biochemical responses of C. moschata. We demonstrate that M. incognita infection leads to significant growth impairment in C. moschata, evidenced by reduced plant height and biomass, along with the significant development of nematode-induced galls. Concurrently, a pronounced oxidative stress response was observed, characterized by elevated levels of hydrogen peroxide and a significant increase in antioxidant defense mechanisms, including the upregulation of key antioxidative enzymes (superoxide dismutase, glutathione reductase, catalase, and peroxidase) and the accumulation of glutathione. These responses highlight a dynamic interaction between the plant and the nematode, wherein C. moschata activates a robust antioxidant defense to mitigate the oxidative stress induced by nematode infection. Despite these defenses, the persistence of growth impairment underscores the challenge posed by M. incognita to the agricultural production of C. moschata. Our findings contribute to the understanding of plant-nematode interactions, paving the way for the development of strategies aimed at enhancing resistance in Cucurbitaceae crops against nematode pests, thus supporting sustainable agricultural practices.

15.
Planta ; 259(5): 121, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615288

RESUMO

MAIN CONCLUSION: Upon systemic S. indica colonization in split-root system cyst and root-knot nematodes benefit from endophyte-triggered carbon allocation and altered defense responses what significantly facilitates their development in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with different plants including Arabidopsis thaliana. It enhances host's growth and resistance to different abiotic and biotic stresses such as infestation by the cyst nematode Heterodera schachtii (CN). In this work, we show that S. indica also triggers similar direct reduction in development of the root-knot nematode Meloidogyne javanica (RKN) in A. thaliana. Further, to mimick the natural situation occurring frequently in soil where roots are unequally colonized by endophytes we used an in vitro split-root system with one half of A. thaliana root inoculated with S. indica and the other half infected with CN or RKN, respectively. Interestingly, in contrast to direct effects, systemic effects led to an increase in number of both nematodes. To elucidate this phenomenon, we focused on sugar metabolism and defense responses in systemic non-colonized roots of plants colonized by S. indica. We analyzed the expression of several SUSs and INVs as well as defense-related genes and measured sugar pools. The results show a significant downregulation of PDF1.2 as well as slightly increased sucrose levels in the non-colonized half of the root in three-chamber dish. Thus, we speculate that, in contrast to direct effects, both nematode species benefit from endophyte-triggered carbon allocation and altered defense responses in the systemic part of the root, which promotes their development. With this work, we highlight the complexity of this multilayered tripartite relationship and deliver new insights into sugar metabolism and plant defense responses during S. indica-nematode-plant interaction.


Assuntos
Arabidopsis , Basidiomycota , Cistos , Tylenchoidea , Animais , Endófitos , Carbono , Açúcares
16.
Phytopathology ; : PHYTO08230286R, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427606

RESUMO

This study provides the first report of a quantitative trait locus (QTL) in maize (Zea mays) for resistance to the southern root-knot nematode (SRKN) (Meloidogyne incognita). The SRKN can feed on the roots of maize in the U.S. Southern Coastal Plain region and can cause yield losses of 30% or more in heavily infested fields. Increases in SRKN density in the soil may reduce the yield for subsequently planted susceptible crops. The use of maize hybrids with resistance to SRKN could prevent an increase in SRKN density, yet no genetic regions have been identified that confer host resistance. In this study, a B73 (susceptible) × Ky21 (resistant) S5 recombinant inbred line (RIL) population was phenotyped for total number of eggs (TE) and root weight. This population had been genotyped using single-nucleotide polymorphisms (SNPs). By utilizing the SNP data with the phenotype data, a single QTL was identified on chromosome 5 that explained 15% of the phenotypic variation (PV) for the number of eggs and 11% of the PV for the number of eggs per gram of root (EGR). Plants that were homozygous for the Ky21 allele for the most associated marker PZA03172.3 had fewer eggs and fewer EGR than the plants that were homozygous or heterozygous for the B73 allele. Thus, the first QTL for SRKN resistance in maize has been identified and could be incorporated into maize hybrids.

17.
J Nematol ; 56(1): 20240004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495936

RESUMO

The host status of carrot, melon, and susceptible and resistant cultivars of tomato, cotton, cowpea, and pepper for a California isolate of the peach root-knot nematode Meloidogyne floridensis was determined in greenhouse pot experiments. It was compared to a race 3 isolate of M. incognita. Melon was an excellent host for both isolates and roots were heavily galled after the 8-week trial. Carrot was a host for M. incognita, but a poor host for M. floridensis, although both isolates caused similar levels of galling. Susceptible cotton was a good host for M. incognita race 3, but a poor host for M. floridensis. Susceptible tomato, cowpea, and pepper were good hosts for both isolates. The M. incognita resistance in tomato and pepper was broken by M. floridensis. Resistant cowpea was a maintenance host as population levels of M. floridensis remained virtually unchanged over the trial period. We conclude that M. floridensis poses a risk to some important vegetable crops in California, as it reproduces on most vegetable crops, including some cultivars that are resistant to M. incognita. On susceptible crops, the reproduction of M. floridensis was always significantly less than that of M. incognita, and we hypothesize that in mixed species field populations, M. incognita will outcompete M. floridensis. This study demonstrates that efforts to limit the spread and prevent further introductions of M. floridensis in California are important to maintain the effectiveness of plant resistance as a nematode management strategy in vegetable crops.

18.
Plant Dis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549276

RESUMO

Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cv. Tiegun yam. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16-40 cm than those at a depth of 0-15 cm and 41-70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial alpha diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.

19.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516730

RESUMO

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Botrytis/fisiologia , Botrytis/patogenicidade , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Imunidade Vegetal , Interações Hospedeiro-Parasita , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
20.
Pest Manag Sci ; 80(7): 3098-3106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38319036

RESUMO

BACKGROUND: Bacillus thuringiensis (Bt) and its crystal toxin or δ-endotoxins (Cry) offer great potential for the efficient control of crop pests. A vast number of pests can potentially infect the same host plant, either simultaneously or sequentially. However, no effective Bt-Cry protein has been reported to control both aphids and plant parasitic nematodes due to its highly specific activity. RESULTS: Our study indicated that the Cry5Ba2 protein was toxic to the green peach aphid Myzus persicae, which had a median lethal concentration (LC50) of 9.7 ng µL-1 and fiducial limits of 3.1-34.6 ng µL-1. Immunohistochemical localization of Cry5Ba2 revealed that it could bind to the apical tip of microvilli in midgut regions. Moreover, transgenic tobacco plants expressing Cry5Ba2 exhibited significant resistance to Myzus persicae, as evidenced by reduced insect survival and impaired fecundity, and also intoxicated the Meloidogyne incognita as indicated by a decrease in galls and progeny reproduction. CONCLUSION: In sum, we identified a new aphicidal Bt toxin resource that could simultaneously control both aboveground and belowground pests, thus extending the application range of Bt-based strategy for crop protection. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Nicotiana , Plantas Geneticamente Modificadas , Tylenchoidea , Animais , Nicotiana/genética , Nicotiana/parasitologia , Endotoxinas/genética , Endotoxinas/metabolismo , Afídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Plantas Geneticamente Modificadas/genética , Tylenchoidea/fisiologia , Tylenchoidea/efeitos dos fármacos , Controle Biológico de Vetores , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA