Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JMIR Infodemiology ; 3: e37207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113381

RESUMO

Background: Medication-assisted treatment (MAT) is an effective method for treating opioid use disorder (OUD), which combines behavioral therapies with one of three Food and Drug Administration-approved medications: methadone, buprenorphine, and naloxone. While MAT has been shown to be effective initially, there is a need for more information from the patient perspective about the satisfaction with medications. Existing research focuses on patient satisfaction with the entirety of the treatment, making it difficult to determine the unique role of medication and overlooking the views of those who may lack access to treatment due to being uninsured or concerns over stigma. Studies focusing on patients' perspectives are also limited by the lack of scales that can efficiently collect self-reports across domains of concerns. Objective: A broad survey of patients' viewpoints can be obtained through social media and drug review forums, which are then assessed using automated methods to discover factors associated with medication satisfaction. Because the text is unstructured, it may contain a mix of formal and informal language. The primary aim of this study was to use natural language processing methods on text posted on health-related social media to detect patients' satisfaction with two well-studied OUD medications: methadone and buprenorphine/naloxone. Methods: We collected 4353 patient reviews of methadone and buprenorphine/naloxone from 2008 to 2021 posted on WebMD and Drugs.com. To build our predictive models for detecting patient satisfaction, we first employed different analyses to build four input feature sets using the vectorized text, topic models, duration of treatment, and biomedical concepts by applying MetaMap. We then developed six prediction models: logistic regression, Elastic Net, least absolute shrinkage and selection operator, random forest classifier, Ridge classifier, and extreme gradient boosting to predict patients' satisfaction. Lastly, we compared the prediction models' performance over different feature sets. Results: Topics discovered included oral sensation, side effects, insurance, and doctor visits. Biomedical concepts included symptoms, drugs, and illnesses. The F-score of the predictive models across all methods ranged from 89.9% to 90.8%. The Ridge classifier model, a regression-based method, outperformed the other models. Conclusions: Assessment of patients' satisfaction with opioid dependency treatment medication can be predicted using automated text analysis. Adding biomedical concepts such as symptoms, drug name, and illness, along with the duration of treatment and topic models, had the most benefits for improving the prediction performance of the Elastic Net model compared to other models. Some of the factors associated with patient satisfaction overlap with domains covered in medication satisfaction scales (eg, side effects) and qualitative patient reports (eg, doctors' visits), while others (insurance) are overlooked, thereby underscoring the value added from processing text on online health forums to better understand patient adherence.

2.
JMIR Med Inform ; 10(2): e29806, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175201

RESUMO

BACKGROUND: Several prognostic scores have been proposed to predict functional outcomes after an acute ischemic stroke (AIS). Most of these scores are based on structured information and have been used to develop prediction models via the logistic regression method. With the increased use of electronic health records and the progress in computational power, data-driven predictive modeling by using machine learning techniques is gaining popularity in clinical decision-making. OBJECTIVE: We aimed to investigate whether machine learning models created by using unstructured text could improve the prediction of functional outcomes at an early stage after AIS. METHODS: We identified all consecutive patients who were hospitalized for the first time for AIS from October 2007 to December 2019 by using a hospital stroke registry. The study population was randomly split into a training (n=2885) and test set (n=962). Free text in histories of present illness and computed tomography reports was transformed into input variables via natural language processing. Models were trained by using the extreme gradient boosting technique to predict a poor functional outcome at 90 days poststroke. Model performance on the test set was evaluated by using the area under the receiver operating characteristic curve (AUC). RESULTS: The AUCs of text-only models ranged from 0.768 to 0.807 and were comparable to that of the model using National Institutes of Health Stroke Scale (NIHSS) scores (0.811). Models using both patient age and text achieved AUCs of 0.823 and 0.825, which were similar to those of the model containing age and NIHSS scores (0.841); the model containing preadmission comorbidities, level of consciousness, age, and neurological deficit (PLAN) scores (0.837); and the model containing Acute Stroke Registry and Analysis of Lausanne (ASTRAL) scores (0.840). Adding variables from clinical text improved the predictive performance of the model containing age and NIHSS scores, the model containing PLAN scores, and the model containing ASTRAL scores (the AUC increased from 0.841 to 0.861, from 0.837 to 0.856, and from 0.840 to 0.860, respectively). CONCLUSIONS: Unstructured clinical text can be used to improve the performance of existing models for predicting poststroke functional outcomes. However, considering the different terminologies that are used across health systems, each individual health system may consider using the proposed methods to develop and validate its own models.

3.
J Biomed Inform ; 120: 103864, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265451

RESUMO

OBJECTIVE: The majority of cancer patients suffer from severe pain at the advanced stage of their illness. In most cases, cancer pain is underestimated by clinical staff and is not properly managed until it reaches a critical stage. Therefore, detecting and addressing cancer pain early can potentially improve the quality of life of cancer patients. The objective of this research project was to develop a generalizable Natural Language Processing (NLP) pipeline to find and classify physician-reported pain in the radiation oncology consultation notes of cancer patients with bone metastases. MATERIALS AND METHODS: The texts of 1249 publicly-available hospital discharge notes in the i2b2 database were used as a training and validation set. The MetaMap and NegEx algorithms were implemented for medical terms extraction. Sets of NLP rules were developed to score pain terms in each note. By averaging pain scores, each note was assigned to one of the three verbally-declared pain (VDP) labels, including no pain, pain, and no mention of pain. Without further training, the generalizability of our pipeline in scoring individual pain terms was tested independently using 30 hospital discharge notes from the MIMIC-III database and 30 consultation notes of cancer patients with bone metastasis from our institution's radiation oncology electronic health record. Finally, 150 notes from our institution were used to assess the pipeline's performance at assigning VDP. RESULTS: Our NLP pipeline successfully detected and quantified pain in the i2b2 summary notes with 93% overall precision and 92% overall recall. Testing on the MIMIC-III database achieved precision and recall of 91% and 86% respectively. The pipeline successfully detected pain with 89% precision and 82% recall on our institutional radiation oncology corpus. Finally, our pipeline assigned a VDP to each note in our institutional corpus with 84% and 82% precision and recall, respectively. CONCLUSION: Our NLP pipeline enables the detection and classification of physician-reported pain in our radiation oncology corpus. This portable and ready-to-use pipeline can be used to automatically extract and classify physician-reported pain from clinical notes where the pain is not otherwise documented through structured data entry.


Assuntos
Neoplasias Ósseas , Médicos , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural , Dor/diagnóstico , Qualidade de Vida
4.
Stud Health Technol Inform ; 281: 258-262, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042745

RESUMO

Extracting meaningful information from clinical notes is challenging due to their semi- or unstructured format. Clinical notes such as discharge summaries contain information about diseases, their risk factors, and treatment approaches associated to them. As such, it is critical for healthcare quality as well as for clinical research to extract those information and make them accessible to other computerized applications that rely on coded data. In this context, the goal of this paper is to compare the automatic medical entity extraction capacity of two available entity extraction tools: MetaMap (MM) and Amazon Comprehend Medical (ACM). Recall, precision and F-score have been used to evaluate the performance of the tools. The results show that ACM achieves higher average recall, average precision, and average F-score in comparison with MM.

5.
J Biomed Inform ; 94: 103177, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986506

RESUMO

OBJECTIVES: Treatment used in a randomized clinical trial is a critical data element both for physicians at the point of care and reviewers who are evaluating different interventions. Much of existing work on treatment extraction from the biomedical literature has focused on the extraction of pharmacological interventions. However, non-pharmacological interventions (e.g., exercise, diet, etc.) that are frequently used to address chronic conditions are less well studied. The goal of this study is to compare knowledge-based and machine learning strategies for the extraction of both drug and non-drug treatments. METHODS: We collected 800 randomized clinical trial abstracts each for breast cancer and diabetes from PubMed. The treatments in the result/conclusion sentences of the abstracts were manually annotated and marked as drug/non-drug treatments. We then designed three methods to identify the treatments and evaluated the systems with respect to drug/non-drug treatments. The first method is solely based on knowledge base (here we used MetaMap). The second method is based on a machine learning model trained mainly on contextual features (ML_only). The third method is a combination approach that integrates the previous two approaches. RESULTS/DISCUSSION: Results show that MetaMap, when used with high precision semantic types, has better performance for drug compared to non-drug treatments (F1 = 0.77 vs. 0.64). The ML_only approach has smaller performance difference between drug and non-drug treatments compared with the KB-based approach (F1 = 0.02 vs. 0.05, 0.07, and 0.13). The combination approach achieves significantly better performance than all MetaMap approaches alone for total treatments (F1 = 0.76 vs. 0.72, p < 0.001). The performance gain mainly comes from the non-drug treatments (0.03-0.08 improvement in F1), while the drug treatments do not benefit much from the combination approach (0-0.03 improvement in F1). CONCLUSION: These results suggest that a knowledge-based approach should be employed for medical conditions that are primarily treated with drugs whereas conditions that are treated with either a combination of drug and non-drug interventions or primarily non-drug interventions should use automated tools that combine machine learning and a knowledge-based approach to achieve optimal performance.


Assuntos
Tratamento Farmacológico , Automação , Humanos , Aprendizado de Máquina , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
BMC Med Inform Decis Mak ; 18(Suppl 3): 74, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30255810

RESUMO

BACKGROUND: Clinical notes such as discharge summaries have a semi- or unstructured format. These documents contain information about diseases, treatments, drugs, etc. Extracting meaningful information from them becomes challenging due to their narrative format. In this context, we aimed to compare the automatic extraction capacity of medical entities using two tools: MetaMap and cTAKES. METHODS: We worked with i2b2 (Informatics for Integrating Biology to the Bedside) Obesity Challenge data. Two experiments were constructed. In the first one, only one UMLS concept related with the diseases annotated was extracted. In the second, some UMLS concepts were aggregated. RESULTS: Results were evaluated with manually annotated medical entities. With the aggregation process the result shows a better improvement. MetaMap had an average of 0.88 in recall, 0.89 in precision, and 0.88 in F-score. With cTAKES, the average of recall, precision and F-score were 0.91, 0.89, and 0.89, respectively. CONCLUSIONS: The aggregation of concepts (with similar and different semantic types) was shown to be a good strategy for improving the extraction of medical entities, and automatic aggregation could be considered in future works.


Assuntos
Armazenamento e Recuperação da Informação , Processamento de Linguagem Natural , Unified Medical Language System , Humanos
7.
J Biomed Semantics ; 9(1): 18, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895320

RESUMO

BACKGROUND: In recent years, Twitter has been applied to monitor diseases through its facility to monitor users' comments and concerns in real-time. The analysis of tweets for disease mentions should reflect not only user specific concerns but also disease outbreaks. This requires the use of standard terminological resources and can be focused on selected geographic locations. In our study, we differentiate between hospital and airport locations to better distinguish disease outbreaks from background mentions of disease concerns. RESULTS: Our analysis covers all geolocated tweets over a 6 months time period, uses SNOMED-CT as a standard medical terminology, and explores language patterns (as well as MetaMap) to identify mentions of diseases in reference to the geolocation of tweets. Contrary to our expectation, hospital and airport geolocations are not suitable to collect significant portions of tweets concerned with disease outcomes. Overall, geolocated tweets exposed a large number of messages commenting on disease-related news articles. Furthermore, the geolocated messages exposed an over-representation of non-communicable diseases in contrast to infectious diseases. CONCLUSIONS: Our findings suggest that disease mentions on Twitter not only serve the purpose to share personal statements but also to share concerns about news articles. In particular, our assumption about the relevance of hospital and airport geolocations for an increased frequency of diseases mentions has not been met. To further address the linguistic cues, we propose the study of health forums to understand how a change in medium affects the language applied by the users. Finally, our research on the language use may provide essential clues to distinguish complementary trends in the use of language in Twitter when analysing health-related topics.


Assuntos
Aeroportos , Mineração de Dados , Doença , Hospitais , Mídias Sociais , Geografia
8.
J Biomed Inform ; 63: 22-32, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27444186

RESUMO

Information extraction from narrative clinical notes is useful for patient care, as well as for secondary use of medical data, for research or clinical purposes. Many studies focused on information extraction from English clinical texts, but less dealt with clinical notes in languages other than English. This study tested the feasibility of using "off the shelf" information extraction algorithms to identify medical concepts from Italian clinical notes. Among all the available and well-established information extraction algorithms, we used MetaMap to map medical concepts to the Unified Medical Language System (UMLS). The study addressed two questions: (Q1) to understand if it would be possible to properly map medical terms found in clinical notes and related to the semantic group of "Disorders" to the Italian UMLS resources; (Q2) to investigate if it would be feasible to use MetaMap as it is to extract these medical concepts from Italian clinical notes. We performed three experiments: in EXP1, we investigated how many medical concepts of the "Disorders" semantic group found in a set of clinical notes written in Italian could be mapped to the UMLS Italian medical sources; in EXP2 we assessed how the different processing steps used by MetaMap, which are English dependent, could be used in Italian texts to map the original clinical notes on the Italian UMLS sources; in EXP3 we automatically translated the clinical notes from Italian to English using Google Translator, and then we used MetaMap to map the translated texts. Results in EXP1 showed that the Italian UMLS Metathesaurus sources covered 91% of the medical terms of the "Disorders" semantic group, as found in the studied dataset. We observed that even if MetaMap was built to analyze texts written in English, most of its processing steps worked properly also with texts written in Italian. MetaMap identified correctly about half of the concepts in the Italian clinical notes. Using MetaMap's annotation on Italian clinical notes instead of a simple text search improved our results of about 15 percentage points. MetaMap's annotation of Italian clinical notes showed recall, precision and F-measure equal to 0.53, 0.98 and 0.69, respectively. Most of the failures were due to the impossibility for MetaMap to generate meaningful variants for the Italian language, suggesting that modifying MetaMap to allow generating Italian variants could improve the performance. MetaMap's performance in annotating automatically translated English clinical notes was in line with findings in the literature, with similar recall (0.75), F-measure (0.83) and even higher precision (0.95). Most of the failures were due to a bad Italian to English translation of medical terms, suggesting that using an automatic translation tool specialized in translating medical concepts might be useful to obtain better performances. In conclusion, performances obtained using MetaMap on the fully automatic translation of the Italian text are good enough to allow to use MetaMap "as it is" in clinical practice.


Assuntos
Armazenamento e Recuperação da Informação , Processamento de Linguagem Natural , Unified Medical Language System , Algoritmos , Estudos de Viabilidade , Humanos , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA