Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Environ Microbiome ; 19(1): 43, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909236

RESUMO

Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.

2.
Environ Res ; 252(Pt 4): 119151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754608

RESUMO

The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.


Assuntos
Compostagem , Eliminação de Resíduos Líquidos , Compostagem/métodos , Eliminação de Resíduos Líquidos/métodos , Microbiologia do Solo , Biodegradação Ambiental , Solo , Actinobacteria , Actinomadura , Streptomyces , Substâncias Húmicas
3.
Front Vet Sci ; 11: 1340849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721154

RESUMO

Introduction: Pigs are often used to study the intestinal development of newborns, particularly as preterm pig models that mimic the intestinal growth of human preterm infants. Neonatology's study of delivery mode's impact on neonatal development is crucial. Methods: We established 14 newborn pigs delivered via cesarean sections (C-section, at 113 days of gestational age, CS group) and 8 naturally born pigs were used as controls (at 114 days of gestational age, NF group). The impact of two alternative delivery procedures (C-section and natural birth) on the levels of short-chain fatty acids (SCFAs) and organic acids in the hepatic and intestines of newborn pigs were compared using metabolomics. The underlying molecular pathways are examined at the "protein-metabolite" level by integrating proteomic data. Results: The findings demonstrated that the mode of delivery changed the metabolism of SCFAs in newborn pigs, perhaps by affecting the physiology levels of cyclic intermediates such as lactate and malate in the pyruvate metabolic pathway. Additionally, by participating in the fatty acid metabolism pathway, two distinct proteins (FASN and HSD17B4) may impact the physiological concentration of these tiny metabolites. Discussion: In conclusion, this study provided reliable animal model data for understanding the physiological SCFA metabolic information and its affecting mechanism of large-gestational age preterm infants.

4.
J Oleo Sci ; 73(5): 695-708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692892

RESUMO

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Metabolômica , Hepatopatia Gordurosa não Alcoólica , Saponinas , Smilax , Transcriptoma , Animais , Smilax/química , Saponinas/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Masculino , Metabolômica/métodos , Dieta Hiperlipídica/efeitos adversos , Transcriptoma/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esfingolipídeos/metabolismo , Glicerofosfolipídeos/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Modelos Animais de Doenças
5.
Poult Sci ; 103(7): 103774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669820

RESUMO

Goose astrovirus genotype 2 (GAstV-2) mainly causes gout in goslings; therefore, it is a major pathogen threatening to goose flocks. However, the mechanisms underlying host-GAstV-2 interactions remain unclear because host cells suitable for GAstV-2 replication have been unavailable. We previously noted that GAstV-2 is primarily located in goose renal epithelial cells, where it causes kidney damage. Therefore, here, we derived goose primary renal tubular epithelial (RTE) cells (GRTE cells) from the kidneys of goose embryos after collagenase I digestion. After culture in Dulbecco's modified Eagle medium/Nutrient mixture F-12 with 10% fetal bovine serum (FBS), the isolated cells had polygonal with roadstone-like morphology; they were identified to be epithelial cells based on the presence of cytokeratin 18 expression detected through immunofluorescence assay (IFA). GAstV-2 infection in GRTE cells led to no obvious cytopathic effects; the maximum amounts of infectious virions were observed 48 h post infection through IFA and quantitative PCR. Next, RNA-seq was performed to identify and map post-GAstV-2 infection differentially expressed genes. The downregulated pathways were mainly related to metabolism, including tryptophan metabolism, drug metabolism by cytochrome P450, xenobiotic metabolism by cytochrome P450, retinol metabolism, butanoate metabolism, starch and sucrose metabolism, ascorbate and aldarate metabolism, and drug metabolism by other enzymes and peroxisome. In contrast, the upregulated pathways were mostly related to the host cell defense and proliferation, including extracellular matrix-receptor interaction, complement and coagulation cascades, phagosome, PI3K-Akt signaling pathway, human T-lymphotropic virus 1 infection, lysosome, and tumor necrosis factor signaling pathway. In conclusion, we developed a GRTE cell line for GAstV-2 replication and analyzed the potential host-GAstV-2 interactions through RNA-seq; our results may aid in further investigating the pathogenic mechanisms underlying GAstV-2 infection and provide strategies for its prevention and control.


Assuntos
Infecções por Astroviridae , Células Epiteliais , Gansos , Genótipo , Doenças das Aves Domésticas , Animais , Gansos/virologia , Células Epiteliais/virologia , Doenças das Aves Domésticas/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Análise de Sequência de RNA/veterinária , Túbulos Renais/virologia , Túbulos Renais/citologia , Avastrovirus/fisiologia , Avastrovirus/genética , Células Cultivadas
6.
Insects ; 15(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667384

RESUMO

The recent dominance of Adelphocoris suturalis Jakovlev as the primary cotton field pest in Bt-cotton-cultivated areas has generated significant interest in cotton pest control research. This study addresses the limited understanding of cotton defense mechanisms triggered by A. suturalis feeding. Utilizing LC-QTOF-MS, we analyzed cotton metabolomic changes induced by A. suturalis, and identified 496 differential positive ions (374 upregulated, 122 downregulated) across 11 categories, such as terpenoids, alkaloids, phenylpropanoids, flavonoids, isoflavones, etc. Subsequent iTRAQ-LC-MS/MS analysis of the cotton proteome revealed 1569 differential proteins enriched in 35 metabolic pathways. Integrated metabolome and proteome analysis highlighted significant upregulation of 17 (89%) proteases in the α-linolenic acid (ALA) metabolism pathway, concomitant with a significant increase in 14 (88%) associated metabolites. Conversely, 19 (73%) proteases in the fructose and mannose biosynthesis pathway were downregulated, with 7 (27%) upregulated proteases corresponding to the downregulation of 8 pathway-associated metabolites. Expression analysis of key regulators in the ALA pathway, including allene oxidase synthase (AOS), phospholipase A (PLA), allene oxidative cyclase (AOC), and 12-oxophytodienoate reductase3 (OPR3), demonstrated significant responses to A. suturalis feeding. Finally, this study pioneers the exploration of molecular mechanisms in the plant-insect relationship, thereby offering insights into potential novel control strategies against this cotton pest.

7.
Bioresour Technol ; 400: 130683, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599352

RESUMO

The productivity and efficiency of two-chamber microbial electrolysis cell and anaerobic digestion integrated system (MEC-AD) were promoted by a complex of anaerobic granular sludge and iron oxides (Fe-AnGS) as inoculum. Results showed that MEC-AD with Fe-AnGS achieved biogas upgrading with a 23%-29% increase in the energy recovery rate of external circuit current and a 26%-31% decrease in volatile fatty acids. The energy recovery rate of MEC-AD remained at 52%-57%, indicating a stable operation performance. The selectively enriched methanogens and electroactive bacteria resulted in dominant hydrogenotrophic and acetoclastic methanogenesis in the cathode and anode chambers. Mechanistic analysis revealed that MEC-AD with Fe-AnGS led to specifically upregulated enzymes related to energy metabolism and electron transfer. Fe-AnGS as inoculum could improve the long-term operation performance of MEC-AD. Consequently, this study provides an efficient strategy for biogas upgrading in MEC-AD.


Assuntos
Biocombustíveis , Eletrólise , Metano , Anaerobiose , Metano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Fontes de Energia Bioelétrica/microbiologia , Reatores Biológicos , Eletrodos , Bactérias/metabolismo
8.
Acta Trop ; 255: 107212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641222

RESUMO

Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.


Assuntos
Biomphalaria , Interações Hospedeiro-Parasita , Metabolômica , Fenótipo , Schistosoma mansoni , Transcriptoma , Biomphalaria/parasitologia , Biomphalaria/genética , Animais , Schistosoma mansoni/genética , Interações Hospedeiro-Parasita/genética , Brasil , Perfilação da Expressão Gênica , Esquistossomose mansoni/parasitologia
9.
Vet Immunol Immunopathol ; 272: 110755, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643554

RESUMO

Probiotics are essential in the body's nutrients, improving the ratio of meat to meat, immune response, and preventing diseases. In this study, RNA-sequencing (RNA-seq) was used to identify the differentially expressed genes (DEGs), enriched related pathways, and Gene Ontology (GO) terms among blank negative control (NC), supplemented with Bacillus spp. (BS) and commercial probiotic (PC) groups after a 42-day fed supplementation. The results showed that 2005, 1356, and 2189 DEGs were significantly altered in BS vs. NC, PC vs NC, and BS vs PC groups, respectively. On the other hand, 9 DEGs were further validated by qRT-PCR, indicating that the qRT-PCR and RNA-Seq results were more consistent. Therefore, the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs showed that the DEGs were mainly enriched to metabolism signalling pathways (alpha-linolenic acid metabolism, linoleic acid metabolism, tryptophan metabolism, tyrosine metabolism, ether lipid metabolism, and metabolic pathway, etc) and immune response pathways (cytokine-cytokine receptor interaction, MAPK signalling pathway, and intestinal immune network for IgA production, neuroactive ligand-receptor interaction etc). These results will provide a better understanding of the role of probiotics in chicken development and provide basic information on the genetic development of chickens.


Assuntos
Bacillus , Galinhas , Probióticos , Transdução de Sinais , Baço , Animais , Probióticos/administração & dosagem , Probióticos/farmacologia , Galinhas/imunologia , Galinhas/genética , Galinhas/microbiologia , Baço/metabolismo , Baço/imunologia , Ração Animal/análise , Suplementos Nutricionais , Perfilação da Expressão Gênica/veterinária , Ontologia Genética
10.
Food Nutr Res ; 682024.
Artigo em Inglês | MEDLINE | ID: mdl-38327997

RESUMO

Background: Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective: This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design: 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results: Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein ß (C/EBPß), insulin receptor b (IRß), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions: Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.

11.
Biofactors ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353465

RESUMO

The one-carbon metabolism pathway is involved in critical human cellular functions such as cell proliferation, mitochondrial respiration, and epigenetic regulation. In the homocysteine-methionine cycle S-adenosyl-methionine (SAM) and S-adenosyl-homocysteine (SAH) are synthetized, and their levels are finely regulated to ensure proper functioning of key enzymes which control cellular growth and differentiation. Here we review the main biological mechanisms involving SAM and SAH and the known related human diseases. It was recently demonstrated that SAM and SAH levels are altered in plasma of subjects with trisomy 21 (T21) but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. This review aims at providing an overview of the biological mechanisms which are altered in response to changes in the levels of SAM and SAH observed in DS.

12.
Cancer Lett ; 589: 216641, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232812

RESUMO

Neoadjuvant chemoradiotherapy (NCRT) is widely used for locally advanced rectal cancer (LARC). This study aimed to conduct an effective model to predict NCRT sensitivity and provide guidance for clinical treatment. Biomarkers for NCRT sensitivity were identified by applying transcriptome profiles using logistic regression and subsequently screened out by Spearman correlation analysis and four machine learning algorithms. A deep neural network (DNN) predictor was constructed by using in-house dataset and validated in two independent datasets. Additionally, a web-based program was developed. Wnt/ß-catenin signaling and linoleic acid metabolism (LA) pathways were associated with NCRT sensitivity and prognosis in LARC, antagonistically. A DNN predictor with an 18-gene signature was conducted within in-house datasets. In two validation cohorts, area under ROC curve (AUC) achieved 0.706 and 0.897. The DNN subtypes were significantly associated with NCRT sensitivity, survival status et al. Moreover, NK and cytotoxic T cells were observed contribution to NCRT sensitivity while regulatory T, myeloid-derived suppressor cells and dysfunction of CD4 T effector memory cells could impede NCRT response. A DNN predictor could predict NCRT sensitivity in LARC and stratify LARC patients with different clinical and immunity characteristic.


Assuntos
Neoplasias Retais , Humanos , Resultado do Tratamento , Neoplasias Retais/genética , Neoplasias Retais/terapia , Neoplasias Retais/metabolismo , Terapia Neoadjuvante , Quimiorradioterapia , Redes Neurais de Computação
13.
Biomed Chromatogr ; 38(3): e5806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087453

RESUMO

DK-GV-04P, chemically identified as 3-cinnamyl-2-(4-methoxyphenyl) quinazolin-4(3H)-one, is an investigational molecule synthesized at the Chemical Biology Laboratory of the National Institute of Pharmaceutical Education and Research-Ahmedabad. The compound has shown potential anticancer activity against squamous CAL27 cell lines. Metabolite identification and characterization are critical in drug discovery, providing key insights into a compound's pharmacokinetics, pharmacodynamics safety, and metabolic fate. The primary aim of the study was to identify and characterize the in vitro metabolites of DK-GV-04P. In silico identification of the site of metabolism was also carried out using xenosite online software. The molecule was incubated with human liver microsomes and human S9 liver fraction to generate in vitro metabolites, which were further identified and characterized using ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. A total of nine metabolites (four phase I and five phase II) were identified and characterized through tandem mass spectrometry. The major biotransformation pathways involved in metabolism of DK-GV-04P were hydroxylation, O-demethylation and glucuronidation. In addition to this, a detailed biotransformation pathway of DK-GV-04P has been established in this study.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Software , Descoberta de Drogas
14.
Plant Sci ; 339: 111930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007196

RESUMO

Switchgrass (Panicum virgatum L.) plays a pivotal role as a bioenergy feedstock in the production of cellulosic ethanol and contributes significantly to enhancing ecological grasslands and soil quality. The utilization of non-coding RNAs (ncRNAs) has gained momentum in deciphering the intricate genetic responses to abiotic stress in various plant species. Nevertheless, the current research landscape lacks a comprehensive exploration of the responses of diverse ncRNAs, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), to drought stress in switchgrass. In this study, we employed whole transcriptome sequencing to comprehensively characterize the expression profiles of both mRNA and ncRNAs during episodes of drought stress in switchgrass. Our analysis identified a total of 12,511 mRNAs, 59 miRNAs, 38 circRNAs, and 368 lncRNAs that exhibited significant differential expression between normal and drought-treated switchgrass leaves. Notably, the majority of up-regulated mRNAs displayed pronounced enrichment within the starch and sucrose metabolism pathway, as validated through KEGG analysis. Co-expression analysis illuminated that differentially expressed (DE) lncRNAs conceivably regulated 1308 protein-coding genes in trans and 7110 protein-coding genes in cis. Furthermore, both cis- and trans-target mRNAs of DE lncRNAs exhibited enrichment in four common KEGG pathways. The intricate interplay between lncRNAs and circRNAs with miRNAs via miRNA response elements was explored within the competitive endogenous RNA (ceRNA) network framework. As a result, we constructed elaborate regulatory networks, including lncRNA-novel_miRNA480-mRNA, lncRNA-novel_miRNA304-mRNA, lncRNA/circRNA-novel_miRNA122-PvSS4, and lncRNA/circRNA-novel_miRNA14-PvSS4, and subsequently validated the functionality of the target gene, starch synthase 4 (PvSS4). Furthermore, through the overexpression of PvSS4, we ascertained its capacity to enhance drought tolerance in yeast. However, it is noteworthy that PvSS4 did not exhibit any discernible impact under salt stress conditions. These findings, as presented herein, not only contribute substantively to our understanding of ceRNA networks but also offer a basis for further investigations into their potential functions in response to drought stress in switchgrass.


Assuntos
MicroRNAs , Panicum , RNA Longo não Codificante , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Panicum/genética , Panicum/metabolismo , RNA Longo não Codificante/genética , Secas , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes
15.
Bioresour Technol ; 394: 130221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109975

RESUMO

Partial denitrification (PD) is an alternative to providing NO2- for the anaerobic ammonium oxidation (anammox) process. In this study, three upflow anaerobic sludge blankets (UASB) were used to investigate the effect of an external electric field on PD performance. The results indicated that the maximum nitrite transformation ratio (NTR) reached 76.3 %, with an average NTR of 54.1 %, in the presence of external electric field, whereas the average NTR of the control was only 49.8 %. The fitted maximum specific nitrate reduction rates of PD1, PD2, and PD3 were 83.7, 90.5, and 92.3 mg N g-1VSS h-1, respectively, according to the Haldane model analysis. Microbial community analysis demonstrated that the abundance of Thauera, Comamonas, and Accumulibacter increased with electric assistance. In summary, UASB reactor with electrodes set in the upper region was most feasible for the stable PD process, providing an alternative for developing a coupled PD-anammox process.


Assuntos
Desnitrificação , Esgotos , Anaerobiose , Nitrogênio/análise , Reatores Biológicos , Oxirredução , Nitritos
16.
Heliyon ; 9(10): e20661, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860538

RESUMO

Background: Whether the mechanism of thyroid papillary carcinoma (PTC) is the same in patients with a Hashimoto's thyroiditis (HT) background as compared with patients with a normal background remains a highly debated and controversial issue. In this study, we aimed to analyze the differences and similarities of the metabolic mechanism of PTC in normal and HT background, and to explore the relationship between HT and PTC. Methods: The ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) technology was used to analyze 61 PTC patient tissues (31 HT background and 30 normal tissue (NC) background). Potential biomarkers were screened from principal component analysis (PCA) to orthogonal partial least square (OPLS) discriminant analysis. HMDB was searched to identify potential differential metabolites and final metabolic pathway analysis was performed by MetaboAnalyst 5.0. We analyzed the differential metabolites diagnostic accuracy through receiver operating characteristic (ROC) curves analysis. Results: Seven different metabolites were screened from HT group and NC group, including arginine, glutamic acid, cysteine, citric acid, malic acid, uracil and taurine. Logistic regression model combined with ROC analysis of these 7 biomarkers had good discriminability for PTC (area under operating characteristic curve of HT group and NC group were 0.867 and 0.973, respectively). The HT group had specific metabolic pathways, including aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism. Conclusions: The metabolic profiles of the NC and HT groups had important similarities and differences in PTC. The correlation of PTC with HT may be related to aminoacyl-tRNA biosynthesis, serine and threonine metabolism.

17.
Bioresour Technol ; 390: 129870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839642

RESUMO

This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.


Assuntos
Compostagem , Fosfatos , Fosfatos/química , Fósforo/análise , Solo/química , Bactérias/genética , Polifosfatos
18.
Environ Res ; 237(Pt 2): 117016, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657603

RESUMO

Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.

19.
Huan Jing Ke Xue ; 44(9): 5006-5016, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699818

RESUMO

For resolving the problems of poor nitrogen removal efficiency and substandard effluent quality in wastewater treatment plants during winter, a cold-tolerant strain Glutamicibacter sp. WS1, with heterotrophic nitrification-aerobic denitrification ability, was isolated from activated sludge. The functional genes for nitrogen conversion of strain WS1 were amplified by PCR, and the nitrogen removal characteristics of the strain were verified under different nitrogen sources at 15℃. In addition, the effects of environmental factors on the aerobic denitrification performance of the strain were explored at low temperature. Finally, a reasonable nitrogen metabolism pathway of strain WS1 was resolved based on functional genes and nitrogen balance analysis. The results showed that strain WS1 contained functional genes related to nitrogen conversion, including amoA, napA, nirS, and nirK genes. Notably, nirS and nirK genes coexisted in the strain. At the low temperature of 15℃, with NH4+-N, NO3--N, NO2--N+NO3--N, and NH4+-N+NO3--N as nitrogen sources, the corresponding removal efficiencies of strain WS1 were 100%, 98.10%, 99.87%+100%, and 100%+94.92%, respectively. The optimal denitrification performance of the strain was achieved with sodium citrate as the carbon source, C/N of 16, pH of 8, DO of 4.5-6.8 mg·L-1, and temperature of 30℃. In addition, the NO3--N removal efficiency of strain WS1 reached 92.50% under low temperature (15℃) and low C/N (10) conditions. Based on the results of PCR amplification and nitrogen balance analysis, heterotrophic nitrification-aerobic denitrification/aerobic denitrification and assimilation were the main pathways for nitrogen substrate removal by strain WS1, in which most of the inorganic nitrogen (47%-56%) was converted to gaseous nitrogen through heterotrophic nitrification-aerobic denitrification/aerobic denitrification. Strain WS1 has broad application prospects in the treatment of low-temperature nitrogenous wastewater.


Assuntos
Desnitrificação , Nitrogênio , Temperatura , Nitrificação , Bactérias
20.
Environ Pollut ; 337: 122524, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683759

RESUMO

Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.


Assuntos
Água Potável , Insuficiência Renal Crônica , Animais , Água Potável/análise , Peixe-Zebra , Doenças Renais Crônicas Idiopáticas , Multiômica , Insuficiência Renal Crônica/epidemiologia , Sri Lanka/epidemiologia , Purinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA