Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Water Res ; 263: 122129, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39094199

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.

2.
Water Res ; 263: 122121, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39094200

RESUMO

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.

3.
Sci Total Environ ; 951: 175561, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153640

RESUMO

Anthropogenic nitrogen (N) inputs substantially influence the N cycle in agricultural ecosystems. However, the potential links among various environmental factors, nitrogen functional genes, and transformation rates under N fertilization remain poorly understood. Here, we conducted a five-year field experiment and collected 54 soil samples from three 0-4 m boreholes across different treatments: control, N-addition (nitrogen fertilizer) and NPK-addition (combined application of nitrogen, phosphorus and potassium fertilizers) treatments. Our results revealed pronounced variations in soil physiochemical parameters, metal concentrations and antibiotic levels under both N and NPK treatments. These alternations induced significant shifts in bacterial and fungal communities, altered NFG abundance and composition, and greatly enhanced rates of nitrate reduction processes. Notably, nutrients, antibiotics and bacteria exerted a more pronounced influence on NFGs and nitrate reduction under N treatment, whereas nutrients, metals, bacteria and fungi had a significant impact under NPK treatment. Furthermore, we established multidimensional correlations between nitrate reduction gene profiles and the activity rates under N and NPK treatments, contrasting with the absence of significant relationships in the control treatment. These findings shed light on the intricate relationships between microbial genetics and ecosystem functions in agricultural ecosystem, which is of significance for predicting and managing metabolic processes effectively.

4.
Chemosphere ; 363: 142957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094704

RESUMO

Azo dye-containing sewage is commonly detected at high salinity, temperature and pH. In this study, a halo-thermoalkalophilic azo dye decolorization consortium was enriched and named "consortium HL". Consortium HL which was dominated by Marinobacter (84.30%), Desulfocurvibacter (1.89%), and Pseudomonas (1.85%), was able to completely decolorize Direct Blue 5B (DB5) during incubation with the material at 5% salinity, 50 °C, and pH 9 for 30 h. The decolorization mechanism was proposed based on combined metagenomic analysis, GC‒MS, and enzymatic activity detection. The action of the consortium HL showed great tolerance to variations in salinity, temperature and pH. A phytotoxicity study indicated that the metabolic intermediates showed no significant toxicity to the generation of Cucumis sativus and Oryza sativa seeds. This study, in which azo dye decolorization and degradation under high-salt, high-temperature and high-alkalinity conditions were investigated and deeply analyzed by metagenomic information, is the first report regarding the ability of Marinobacter to decolorize azo dyes at high temperatures.


Assuntos
Biodegradação Ambiental , Marinobacter , Marinobacter/metabolismo , Marinobacter/genética , Compostos Azo/metabolismo , Compostos Azo/química , Corantes/metabolismo , Corantes/química , Consórcios Microbianos , Salinidade , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Oryza
5.
Front Immunol ; 15: 1416185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104524

RESUMO

Background: Kawasaki disease (KD) has been considered as the most common required pediatric cardiovascular diseases among the world. However, the molecular mechanisms of KD were not fully underlined, leading to a confused situation in disease management and providing precious prognosis prediction. The disorders of gut microbiome had been identified among several cardiovascular diseases and inflammation conditions. Therefore, it is urgent to elucidate the characteristics of gut microbiome in KD and demonstrate its potential role in regulating intravenous immunoglobulin (IVIG) resistance and coronary artery injuries. Methods: A total of 96 KD children and 62 controls were enrolled in the study. One hundred forty fecal samples had been harvested from KD patients, including individuals before or after IVIG treatment, with or without early coronary artery lesions and IVIG resistance. Fecal samples had been collected before and after IVIG administration and stored at -80°C. Then, metagenomic analysis had been done using Illumina NovaSeq 6000 platform. After that, the different strains and functional differences among comparisons were identified. Results: First, significant changes had been observed between KD and their controls. We found that the decrease of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides uniformis, and Bacteroides ovatus and the increase of pathogenic bacteria Finegoldia magna, Abiotrophia defectiva, and Anaerococcus prevotii perhaps closely related to the incidence of KD. Then, metagenomic and responding functional analysis demonstrated that short-chain fatty acid pathways and related strains were associated with different outcomes of therapeutic efficacies. Among them, the reduction of Bacteroides thetaiotaomicron, the enrichment of Enterococcus faecalis and antibiotic resistance genes had been found to be involved in IVIG resistance of KD. Moreover, our data also revealed several potential pathogenetic microbiome of that KD patients with coronary artery lesions. Conclusion: These results strongly proved that distinct changes in the gut microbiome of KD and the dysfunction of gut microbiomes should be responsible for the pathogenesis of KD and significantly impact the prognosis of KD.


Assuntos
Fezes , Microbioma Gastrointestinal , Metagenômica , Síndrome de Linfonodos Mucocutâneos , Humanos , Síndrome de Linfonodos Mucocutâneos/microbiologia , Síndrome de Linfonodos Mucocutâneos/imunologia , Microbioma Gastrointestinal/genética , Masculino , Metagenômica/métodos , Feminino , Pré-Escolar , Lactente , Fezes/microbiologia , Imunoglobulinas Intravenosas/uso terapêutico , Metagenoma , Criança , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles
6.
Nat Sci Sleep ; 16: 1091-1108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100910

RESUMO

Background: Obstructive sleep apnea (OSA) patients commonly experience high rates of depression. This study aims to examine the oral microbiota characteristics of OSA and those with comorbid major depressive disorder (OSA+MDD) patients. Methods: Participants were enrolled from Aug 2022 to Apr 2023. Polysomnography, psychiatrist interviews, and scales were used to diagnose OSA and MDD. Oral samples were collected from participants by rubbing swabs on buccal mucosa, palate, and gums. Oral microbiota was analyzed via whole-genome metagenomics and bioinformatic analysis followed sequencing. Venous blood was drawn to detect plasma inflammatory factor levels. Results: The study enrolled 33 OSA patients, 28 OSA+MDD patients, and 28 healthy controls. Significant differences were found in 8 phyla, 229 genera, and 700 species of oral microbiota among the three groups. Prevotellaceae abundance in the OSA and OSA+MDD groups was significantly lower than that in healthy controls. Linear discriminant analysis effect size (LEfSe) analysis showed that Streptococcaceae and Actinobacteria were the characteristic oral microbiota of the OSA and OSA+MDD groups, respectively. KEGG analysis indicates 30 pathways were changed in the OSA and OSA+MDD groups compared with healthy controls, and 23 pathways were changed in the OSA group compared with the OSA+MDD group. Levels of IL-6 in the OSA+MDD group were significantly higher than in the healthy group, correlating positively with the abundance of Schaalia, Campylobacter, Fusobacterium, Alloprevotella, and Candidatus Nanosynbacter in the oral, as well as with Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale scores. Conclusion: Significant differences in oral microbiota populations and gene function were observed among the three groups. OSA patients were characterized by a decreased abundance of Prevotellaceae and an increased abundance of Streptococcaceae. OSA+MDD patients had an increased abundance of Actinobacteria. IL-6 might regulate the relationship between depression and the oral microbiota in OSA+MDD patients.

7.
J Hazard Mater ; 478: 135511, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39173390

RESUMO

Triclosan (TCS), an antimicrobial agent extensively incorporated into pharmaceuticals and personal care products, poses significant environmental risks because of its persistence and ecotoxicity. So far, a few microorganisms were suggested to degrade TCS, but the microbial degradation mechanism remains elusive. Here, a two-component angular dioxygenase (TcsAaAb) responsible for the initial TCS degradation was characterized in Sphingomonas sp. strain YL-JM2C. Whole-cell biotransformation and crude enzyme assays demonstrated that TcsAaAb catalyzed the conversion of TCS to 4-chlorocatechol and 3,5-dichlorocatechol rather than the commonly suggested product 2,4-dichlorophenol. Then two intermediates were catabolized by tcsCDEF cluster via an ortho-cleavage pathway. Critical residues (N262, F279, and F391) for substrate binding were identified via molecular docking and mutagenesis. Further, TcsAaAb showed activity toward methyl triclosan and nitrofen, suggesting its versatile potential for bioremediation. In addition, TCS-degrading genes were also present in diverse bacterial genomes in wastewater, ocean and soil, and a relatively high gene abundance was observed in marine metagenomes, revealing the transformation fate of TCS in environments and the microbial potential in pollutant removal. These findings extend the understanding of the microbe-mediated TCS degradation and contribute to the mining of TCS-degrading strains and enzymes, as well as their application in the bioremediation of contaminated environments.

8.
Bioresour Technol ; 409: 131191, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094964

RESUMO

Producing medium chain fatty acids (MCFAs) from waste activated sludge (WAS) is crucial for sustainable chemical industries. This study addressed the electron donor requirement for MCFAs production by inoculating Lactobacillus at varying concentrations (7.94 × 1010, 3.18 × 1011, and 6.35 × 1011 cell/L) to supply lactate internally. Interestingly, the highest MCFAs yield (∼2000 mg COD/L) occurred at the lowest Lactobacillus inoculation. Higher inoculation concentrations redirected more carbon from WAS towards alcohols production rather than MCFAs generation, with up to 2852 mg COD/L alcohols obtained under 6.35 × 1011 cell/L inoculation. Clostridium dominance and increased genes abundance for substrate hydrolysis, lactate conversion, and MCFAs/alcohol production collectively enhanced WAS-derived MCFAs and alcohols synthesis after Lactobacillus inoculation. Overall, the strategy of Lactobacillus inoculation regulated fermentation outcomes and subsequent carbon recovery in WAS, presenting a sustainable technology to achieve liquid bio-energy production from underutilized wet wastes.

9.
Arch Gynecol Obstet ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150504

RESUMO

PURPOSE: This cross-sectional study aims to assess the interplay between the vaginal microbiota and endometriosis. METHODS: 123 consecutive Italian fertile women, aged between 20 and 40 years old, were enrolled during a routine gynecological consultation; 24 were diagnosed with endometriosis and 99 did not complain of any gynecological disease. All women underwent a vaginal swab for the evaluation of the composition and diversity of vaginal microbiota by means of 16 s rDNA metagenomic sequencing. RESULTS: Compared to women with no gynecological disease, the vaginal microbiota in women with endometriosis showed a similar abundance of Lactobacillus spp.; however, a statistically significant lower abundance in the genera Pseudomonas (p < 0.01), Bifidobacterium (p < 0.05), Novispirillum (p < 0.0000001) and Sphingomonas (p < 0.0000001), and a statistically significant increase in the abundance of the genera Escherichia (p < 0.00001), Megasphaera (p < 0.00001), and Sneathia (p < 0.0001) were observed. CONCLUSIONS: There is a complex interplay between vaginal microbiota composition and endometriosis, showing a distinct microbial signature in the bacterial genera usually found in dysbiosis.

10.
Front Cell Infect Microbiol ; 14: 1390088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040604

RESUMO

Introduction: The dysbiosis of vaginal microbiota is recognized as a potential underlying factor contributing to infertility in women. This study aimed to compare the vaginal microbiomes of infertile and fertile women to investigate their relationship with infertility. Methods: Metagenomic analysis was conducted on samples from 5 infertile and 5 fertile individuals using both amplicon 16S and metagenomics shotgun sequencing methods. Results and discussion: In the infertile group, the bacterial community was primarily represented by three major bacterial genera: Lactobacillus (79.42%), Gardnerella (12.56%) and Prevotella (3.33%), whereas, the fertile group exhibited a more diverse composition with over 8 major bacterial genera, accompanied by significantly reduced abundance of Lactobacillus (48.79%) and Gardnerella (6.98%). At the species level, higher abundances of L. iners, L. gasseri and G. vaginalis were observed in the infertile group. Regarding the microbiome composition, only one fertile and two infertile subjects exhibited the healthiest Community State Types, CST-1, while CST-3 was observed among two infertile and one fertile subject, and CST-4 in three other fertile and one infertile subject. Overall, alpha diversity metrics indicated greater diversity and lower species richness in the control (fertile) group, while the infertile group displayed the opposite trend. However, beta-diversity analysis did not show distinct clustering of samples associated with any specific group; instead, it demonstrated CST-type specific clustering. Shotgun metagenomics further confirmed the dominance of Firmicutes, with a greater abundance of Lactobacillus species in the infertile group. Specifically, L. iners and G. vaginalis were identified as the most dominant and highly abundant in the infertile group. Fungi were only identified in the control group, dominated by Penicillium citrinum (62.5%). Metagenome-assembled genomes (MAGs) corroborated read-based taxonomic profiling, with the taxon L. johnsonii identified exclusively in disease samples. MAG identities shared by both groups include Shamonda orthobunyavirus, L. crispatus, Human endogenous retrovirus K113, L. iners, and G. vaginalis. Interestingly, the healthy microbiomes sequenced in this study contained two clusters, Penicillium and Staphylococcus haemolyticus, not found in the public dataset. In conclusion, this study suggests that lower species diversity with a higher abundance of L. iners, L. gasseri and G. vaginalis, may contribute to female infertility in our study datasets. However, larger sample sizes are necessary to further evaluate such association.


Assuntos
Bactérias , Infertilidade Feminina , Metagenômica , Microbiota , Vagina , Humanos , Feminino , Vagina/microbiologia , Metagenômica/métodos , Infertilidade Feminina/microbiologia , Adulto , Microbiota/genética , Bangladesh , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Metagenoma , Adulto Jovem , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Lactobacillus/classificação , Disbiose/microbiologia , Filogenia
11.
Artigo em Inglês | MEDLINE | ID: mdl-39023746

RESUMO

This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.

12.
J Med Virol ; 96(7): e29802, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023095

RESUMO

Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.


Assuntos
Fezes , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Metagenômica , Viroma , Humanos , Síndrome do Intestino Irritável/virologia , Síndrome do Intestino Irritável/microbiologia , Microbioma Gastrointestinal/genética , Fezes/virologia , Fezes/microbiologia , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma
13.
J Environ Manage ; 366: 121874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025014

RESUMO

Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.


Assuntos
Biocombustíveis , Metano , Nitrogênio , Aço , Aço/química , Nitrogênio/química , Metano/química , Anaerobiose , Carvão Vegetal/química , Carbono/química
14.
Water Res ; 262: 122103, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032333

RESUMO

Nano zero-valent iron (NZVI) has been shown to effectively enhance the chain elongation (CE) process, addressing the issue of limited yield of medium-chain carboxylic acids (MCCA) from organic wastewater. However, the specific impact of NZVI on the metabolism of CE bacteria (CEB) is not well understood. In this study, it was aimed to investigate the mechanism by which an optimal concentration of NZVI influences CE metabolism, particularly in relation to ethanol oxidation, electron transfer, and MCCA synthesis. This was achieved through single-factor influence experiments and metagenomic analysis. The results showed that the addition of 1 g/gVSS NZVI achieved the highest MCCA yield (n-caproic acid + n-octanoic acid) at 2.02 g COD/L, which was 4.9 times higher than the control. This improvement in MCCA production induced by NZVI was attributed to several factors. Firstly, NZVI facilitated the oxidation of acetaldehyde, leading to its reduced accumulation in the system (from 18.4 % to 5.8 %), due to the optimized chemical environment created by NZVI corrosion, including near-neutral pH and a more reductive oxidation-reduction potential (ORP). Additionally, the inherent conductivity property of NZVI and the additional Fe ions released during corrosion improved the electron transfer efficiency between CEB. Lastly, both the composition of microbial communities and the abundance of unique enzyme genes confirmed the selective stimulation of NZVI on the reverse ß-oxidation (RBO) pathway. These findings provide valuable insights into the role of NZVI in CEB metabolism and its potential application for enhancing MCCA production in CE bioreactors.


Assuntos
Acetaldeído , Ácidos Carboxílicos , Ferro , Oxirredução , Ferro/química , Ferro/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Acetaldeído/química , Transporte de Elétrons
15.
mSphere ; 9(7): e0021924, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38904383

RESUMO

Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE: Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.


Assuntos
Genoma Viral , Filogenia , Humanos , Nepal/epidemiologia , Masculino , Criança , Genoma Viral/genética , Metagenômica , Sequenciamento de Nucleotídeos em Larga Escala , Pré-Escolar , Reação em Cadeia da Polimerase em Tempo Real , Encefalite Viral/virologia , Adolescente , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Vírus de DNA/classificação , Feminino
16.
Sci Rep ; 14(1): 14930, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942886

RESUMO

The aim of this study was to assess the correlation between gut microbial taxonomy and various ovarian responses to controlled ovarian stimulation. A total of 22 IVF cycles with a follicle-to-oocyte index (FOI) < 0.5 and 25 IVF cycles with FOI ≥ 0.5 were included in this study. Baseline demographic characteristics were compared between the two groups. Metagenomic sequencing was performed to analyze fecal microbial community profiles. Mice were used to evaluate the effect of Bifidobacterium_longum on ovarian response to stimulation. Compared with FOI < 0.5 group, women in group with FOI ≥ 0.5 had significant more oocytes retrieved (p < 0.01). Prevotella_copri, Bateroides_vulgatus, Escherichia_coli and Bateroides_stercoris were more abundant in FOI < 0.5 group while Bifidobacterium_longum, Faecalibacterium_prausnitzii, Ruminococcus_gnavus and Bifidobacterium_pseudocatenula were more abundant in FOI ≥ 0.5 group. After adjusting for women's age and BMI, Pearson correlation analysis indicated alteration of gut microbiome was related with serum E2, FSH, number of oocytes retrieved and clinical pregnancy rate. Animal study showed ovarian response will be improved after Bifidobacterium_longum applied. An increased abundance of Bacteroidetes and Prevotella copri, as well as a decreased abundance of Bifidobacterium longum, have been found to be associated with poor ovarian responsiveness. Changes in gut microbiomes have been observed to be correlated with certain clinical characteristics. The potential enhancement of ovarian response may be facilitated by the integration of Bifidobacterium longum.


Assuntos
Microbioma Gastrointestinal , Metagenômica , Indução da Ovulação , Feminino , Animais , Humanos , Metagenômica/métodos , Adulto , Camundongos , Indução da Ovulação/métodos , Ovário/microbiologia , Gravidez , Fezes/microbiologia , Fertilização in vitro/métodos
17.
Bioresour Technol ; 406: 130958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876284

RESUMO

To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.


Assuntos
Carvão Vegetal , Glycine max , Ácido Láctico , Glycine max/metabolismo , Carvão Vegetal/química , Ácido Láctico/metabolismo , Fermentação
18.
Genomics Inform ; 22(1): 1, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907281

RESUMO

The goal of the study was to investigate the changes in the gut microbiota during the advancement of gastric cancer (GC) and identify pertinent taxa associated with the disease. We used a public fecal amplicon gastric cancer dataset from the Sequence Retrieval Archive (SRA), of patients with GC, gastritis, and healthy individuals. We did sequence pre-processing, including quality filtering of the sequences. Then, we performed a diversity analysis, evaluating α- and ß-diversity. Next, taxonomic composition analysis was performed and the relative abundances of different taxa at the phylum and genus levels were compared between GC, gastritis, and healthy controls. The obtained results were subsequently subjected to statistical validation. To conclude, metagenomic function prediction was carried out, followed by correlation analysis between the microbiota and KEGG pathways. α analysis revealed a significant difference between male and female categories, while ß analysis demonstrated significant distinctions between GC, gastritis, and healthy controls, as well as between sexes within the GC and gastritis groups. The statistically confirmed taxonomic composition analysis highlighted the presence of the microbes Bacteroides and Veillonella. Furthermore, through metagenomic prediction analysis and correlation analysis with pathways, three taxa, namely Akkermansia, Gammaproteobacteria, and Veillonella, were identified as potential biomarkers for GC. Additionally, this study reports, for the first time, the presence of two bacteria, Desulfobacteriota and Synergistota, in GC, necessitating further investigation. Overall, this research sheds light on the potential involvement of gut microbiota in GC pathophysiology; however, additional studies are warranted to explore its functional significance.

19.
Bioresour Technol ; 406: 131048, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945501

RESUMO

The nitrogen loss in composting is primarily driven by the transformation of organic nitrogen, yet the mechanisms underlying the degradation process remain incompletely understood. This study employed protein family domains (Pfams) analysis based on metagenomic sequencing to investigate the functional characteristics, key microorganisms, and environmental parameters influencing organic nitrogen degradation in chicken manure and pig manure composting. 154 Pfams associated with ammonification function were identified. Predominant Pfams: proteolytic peptidase, followed by chitin/cell wall degraders, least involved in nucleic acid degradation. Ammonifying microbial diversity was basically consistent among compost types, particularly in the thermophilic stage with the peak of abundance of dominant ammonifying microorganisms. Viruses played an important role in ammonification process, especially Uroviricota. 26 key ammonifying genera were identified by the microbial network. pH dominated the metabolic activity of ammonifying microorganisms in various manure compost types, primarily consisting of protein-degrading bacteria with stable community structures.


Assuntos
Galinhas , Compostagem , Esterco , Metagenômica , Nitrogênio , Animais , Nitrogênio/metabolismo , Metagenômica/métodos , Suínos , Domínios Proteicos , Bactérias/metabolismo , Bactérias/genética , Microbiologia do Solo
20.
Microbiol Spectr ; 12(8): e0048324, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916356

RESUMO

From May to July of 2023, one pig farm in Heyuan city, Guangdong Province of China, suffered severe piglet death and sow reproductive disorders. The common pig viruses and bacteria tested negative. To uncover the possible cause of the disease, a metagenomic analysis was performed in the pooled small intestine samples from three 8-day-old diseased piglets. The results showed that Getah virus (GETV), an RNA virus, might be the potential pathogen that affects pig health. Subsequently, GETV nucleotide was detected in all of the 15 samples collected from three diseased piglets using quantitative reverse transcription PCR, suggesting GETV as the main pathogen of the disease. A GETV strain, designated as GDHYLC23, was successfully isolated using the swine testicle cell line. Sequence analysis showed that the epidemic strain had a unique 32-nucleotide repeat insertion in the 3' noncoding region. Phylogenetic analysis showed that GDHYLC23 belonged to the pandemic group III. The identification of GETV with new variations implies the continuous evolution of the virus, which poses potential threats to the swine industry.IMPORTANCEPig farms are faced with emerging and re-emerging viruses that may cause substantial economic loss. The identification of potentially pathogenic viruses helps to prevent and control the spread of diseases. In this study, by using metagenomic analysis, we found that a neglected virus, GETV with a unique insertion in the genome, was the main pathogen in one pig farm that suffered severe piglet death and sow reproductive disorders. Although the potential impact of such an insertion on viral pathogenicity is unknown, the surveillance of the continuing evolution of GETV in pig farms cannot be ignored.


Assuntos
Filogenia , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , China/epidemiologia , Metagenômica , Alphavirus/genética , Alphavirus/isolamento & purificação , Alphavirus/classificação , Genoma Viral/genética , Fazendas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA