Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
Heliyon ; 10(19): e38967, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39430513

RESUMO

Vinasse, a byproduct of ethanol production from sugarcane, is a rich organic matter and poses environmental challenges due to its high pollutant content. Effective biomethane production from vinasse can mitigate its environmental impact by converting organic matter into a useful energy source while reducing its pollutant load. The biomethane production by anaerobic digestion (AD) process of the vinasse byproduct was examined on a laboratory scale. In this regard, several loads from 0.5 to 7 g VS/L were investigated to assess AD performance and methane production. This study investigated how two separate factors, namely the load and hydraulic retention time (HRT), affect both cumulative methane production (CMP) and methane yield (YCH4). This investigation utilized a response surface methodology known as the central composite design (RSM-CCD). Statistical analysis of variance (ANOVA) was employed to evaluate the effectiveness of the model generated. Thus, the model's fit, YCH4 has a maximum R2 value of 0.9759. The results revealed an astounding level of agreement between the experimental data and the proposed model. The RSM results revealed maximum CMP and YCH4 values of 409.82 ml and 178.95 ml/g VS respectively, obtained for optimum load values of 2.17 g VS/L and HRT of 15 h. The results emphasize the environmental and economic significance of AD, providing a sustainable waste management solution that helps reduce greenhouse gas emissions and organic pollution. Additionally, it generates valuable biogas and biofertilizers, presenting economic opportunities through renewable energy production and resource recovery. This approach not only alleviates the environmental burden of vinasse but also enhances the economic viability of ethanol production by creating additional revenue streams.

2.
Ying Yong Sheng Tai Xue Bao ; 35(8): 2267-2281, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39419812

RESUMO

Paddy fields are recognized as significant sources of methane (CH4) emissions, playing a pivotal role in global climate change. Elevated atmospheric carbon dioxide (CO2) concentrations (e[CO2]) exert a profound influence on the carbon cycling of paddy fields. Understanding the effects of e[CO2] on CH4 emissions, as well as the underlying microbial processes, is crucial for enhancing carbon sequestration and reducing emissions in paddy fields. We reviewed the impacts of e[CO2] on CH4 emission in paddy fields, focusing on the activity, abundance, community structure, and diversity of carbon-cycling-related microbes. We also delineated the roles of various microbial processes in mitigating CH4 emissions under e[CO2], as well as the primary environmental determinants. Overall, the type of e[CO2] experimental platforms, duration of fumigation, concentration gradients, and the methods of CO2 enrichment all influence CH4 emissions from paddy fields. e[CO2] initially stimulates CH4 emissions, which may decrease over time, indicating an adaptability of the methane-emitting microbial community to e[CO2]. This response exhibits a trend of initial attenuation followed by an intensification of the positive effects on CH4 emissions. Experiments with abrupt increase of CO2 concentration might overestimate CH4 emissions. The impact of e[CO2] on microbial processes is predominantly characterized by enhanced activities and abundance of methanogens, aerobic and anaerobic methanotrophs. It significantly alters the community composition and diversity of methanotrophs, with minimal effects on methanogens and anaerobic methanotrophic communities. Finally, we outlined future research directions: 1) Integrated investigations into the effects of e[CO2] on CH4 emissions, methanogenesis, and both aerobic and anaerobic methanotrophs in paddy fields could elucidate the mechanisms underlying the impacts of climate change on CH4 emissions; 2) Long-term studies are essential to understand the mechanisms of e[CO2] on CH4 emissions and associated microbial processes more accurately and realistically; 3) Multi-scale (temporal and spatial), multi-factorial (CO2 concentration, temperature, atmospheric nitrogen deposition, and water management practices), and multi-methodological (observational, data, and model integration) research is necessary to effectively reduce the uncertainties in assessing the response of CH4 emissions in paddy fields and related microbial processes to e[CO2] under future climate change scenarios.


Assuntos
Atmosfera , Dióxido de Carbono , Metano , Oryza , Microbiologia do Solo , Metano/metabolismo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Atmosfera/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Ecossistema , Mudança Climática
3.
Environ Sci Technol ; 58(42): 18723-18732, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39396191

RESUMO

Methane emissions from paddy fields can increase under future warming scenarios. Nevertheless, a comprehensive comparison of the temperature sensitivity of methane-related microbial processes remains elusive. Here, we revealed that the temperature sensitivity of methane production (activation energy (Ea) = 0.94 eV; 95% confidence interval (CI), 0.78-1.10 eV) and aerobic (Ea = 0.49 eV; 95% CI, 0.34-0.65 eV) and anaerobic (Ea = 0.46 eV; 95% CI, 0.30-0.62 eV) methane oxidation exhibited notable spatial heterogeneity across 12 Chinese paddy fields spanning 35° longitude and 18° latitude. In addition, the Ea values of aerobic and anaerobic methane oxidation were significantly positively and negatively correlated to the latitude, respectively, while there was no significant correlation between the Ea of methane production and the latitude. Overall, there were no soil factors that had a significant effect on the Ea of methane production. The Ea of aerobic methane oxidation was primarily influenced by the contents of ammonium and clay, whereas the Ea of anaerobic methane oxidation was mainly influenced by the conductivity. Despite the variation, the overall temperature sensitivity of methane production was significantly higher than that of oxidation at a continental scale; therefore, an increase in the emission of methane from paddy fields will be predicted under future warming. Taken together, our study revealed the characteristics of temperature sensitivity of methane production and aerobic and anaerobic methane oxidation simultaneously in Chinese paddy fields, highlighting the potential roles of soil factors in influencing temperature sensitivity.


Assuntos
Metano , Oxirredução , Solo , Temperatura , Metano/metabolismo , Anaerobiose , Solo/química , China , Aerobiose , Microbiologia do Solo , População do Leste Asiático
4.
Bioresour Technol ; 414: 131663, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424011

RESUMO

The capability of graphene oxide (GO) to enhance direct interspecies electron transfer (DIET) and improve anaerobic digestion (AD) performance is gaining attention in AD literature. The present review discusses the implications of GO and its ambivalent role in AD. Under anaerobic conditions, GO is rapidly converted to biologically reduced graphene oxide (bioRGO) through microbial respiration. GO addition could promote the release of extracellular polymeric substances and lead to toxic effects on anaerobic microorganisms. However, further research is needed to determine the GO toxic concentration thresholds. GO application can impact biogas production and organic micropollutants removal of anaerobic digesters. Nevertheless, most of the studies have been conducted at batch scale and further work in continuously operated anaerobic digesters is still needed. Finally, the review evaluates the economic potential of GO application in AD systems. Overall, this review lays the foundations to improve the applicability of GO in future full-scale digesters.

5.
Molecules ; 29(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39407619

RESUMO

Anaerobic digestion (AD) is one of the most significant processes for treating fecal sludge. However, a substantial amount of microplastics (MPs) have been identified in septic tanks, and it remains unclear whether they impact the resource treatment of feces. To investigate this, polyethylene terephthalate (PET) was used as an indicator of MPs to study their effect on the anaerobic digestion of fecal sludge (FS). Two digestion systems were developed: FS mono-digestion and FS co-digestion with anaerobic granular sludge. The results indicated that the effects of PET varied between the two systems. PET inhibited volatile fatty acid synthesis in both systems, but the inhibition period differed. During mono-digestion, PET slightly increased gas and methane production, in contrast to the co-digestion system, where PET reduced methane production by 75.18%. Furthermore, in the mono-digestion system, PET increased soluble chemical oxygen demand and ammonia nitrogen concentrations while blocking phosphorus release, whereas the co-digestion system showed the opposite effects. Ultimately, the choice of digestion method is crucial for the resource utilization of septic tank sludge, and the impact of MPs on AD cannot be ignored.


Assuntos
Microplásticos , Polietilenotereftalatos , Esgotos , Polietilenotereftalatos/química , Esgotos/microbiologia , Anaerobiose , Fezes/química , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio
6.
J Environ Manage ; 370: 122544, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39316878

RESUMO

The traditional anaerobic treatment process for highly concentrated, toxic, and acidic poly (butylene adipate-co-terephthalate) (PBAT) wastewater faces challenges. In contrast, the anaerobic membrane bioreactor (AnMBR) offers the advantage of robust performance, but the influence of start-up modes has not been explored. This study investigated the impact of one-step and stepwise startup (gradual dilution of wastewater) strategies in AnMBR treating PBAT wastewater. The results indicated that the one-step startup group achieved COD removal efficiency of 91.2% ± 2.7% and methane conversion rate of 234.7 ± 8.5 mLCH4/gCOD, which were 21.7% and 81.8 mL CH4/gCOD respectively higher than those achieved by the stepwise start-up group. Furthermore, the one-step startup led to the reduction of startup time by 10 days and the decrease in the average membrane fouling cycle by 6.6 days. Compared to the stepwise start-up group, the one-step startup group exhibited a lower abundance of Bacteroidota (11.3%), and a higher abundance of Proteobacteria (27.1%), Chloroflexi (10.5%), and Actinobacteria (11.8%). The one-step startup strategy facilitated the rapid development of a toxicity-tolerant hydrogenotrophic methanogenic pathway. Consequently, the one-step startup method provided a promising approach for the rapid start-up and excellent performance of AnMBR in PBAT wastewater treatment.

7.
PeerJ ; 12: e17920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247542

RESUMO

This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.


Assuntos
Metabolismo Energético , Fermentação , Formiatos , Metano , Rúmen , Secale , Silagem , Animais , Bovinos , Metano/biossíntese , Metano/metabolismo , Silagem/análise , Silagem/microbiologia , Formiatos/farmacologia , Formiatos/metabolismo , Rúmen/microbiologia , Rúmen/metabolismo , Masculino , Fermentação/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Lactobacillus plantarum/metabolismo , Ração Animal/análise
8.
Trop Anim Health Prod ; 56(8): 263, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302552

RESUMO

Ruminant animals constitute major contributors to greenhouse gas (GHG) emissions and play an important part in sustainable agricultural systems. A bioactive compound (BC) with antibacterial properties was utilized to inhibit rumen methanogens and decrease ruminant methane emissions. The bio efficacy of ruminant nutrition was frequently employed using a new technology through microencapsulation technique to produce stable products. The microencapsulated banana flower powder pellet (mBAFLOP) powder was used as a BC in the diets. Consequently, this study aimed to evaluate the effects of mBAFLOP supplementation on in vitro gas production kinetics, rumen fermentation, microbial population, and methane production. A completely randomized design (CRD) was used to randomly assign respective treatments at 0, 1, 2, and 3% of the total dry matter (DM) substrate. Ruminal pH, in vitro dry matter degradability and volatile fatty acid profile both at 12, and 24 h were not negatively affected by supplementation with mBAFLOP. The supplemented mBAFLOP (3% of total DM substrate) resulting in ruminal ammonia-nitrogen concentrations was linearly increased (P < 0.01) different among treatments, while methane production was reduced when compared with other treatment (quadratic effect, P < 0.05). Moreover, Ruminococcus flavefaciens was increased when the proportion of mBAFLOP supplement was increased. Furthermore, there was a linear effect (P < 0.05) of decreasing Methanobacteriales in the rumen with increased levels of mBAFLOP supplementation. Based on this study, the use of mBAFLOP at 3% could enhance NH3N concentration and cellulolytic bacteria especially Ruminococcus flavefaciens was increased. Furthermore, supplementation with mBAFLOP decreased methane production. Therefore, a possible dietary plant-based bioactive compound, mBAFLOP supplementation cloud enhances rumen fermentation and mitigates methane production.


Assuntos
Ração Animal , Digestão , Fermentação , Metano , Musa , Rúmen , Animais , Musa/química , Rúmen/microbiologia , Rúmen/metabolismo , Metano/metabolismo , Fermentação/efeitos dos fármacos , Digestão/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Flores/química , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Pós , Composição de Medicamentos/veterinária , Bovinos
9.
Environ Sci Pollut Res Int ; 31(43): 55169-55186, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222230

RESUMO

In recent years, pelagic Sargassum has invaded the Caribbean coasts, and anaerobic digestion has been proposed as a sustainable management option. However, the complex composition of these macroalgae acts as a barrier to microbial degradation, thereby limiting methane production. Microbial adaptation is a promising strategy to improve substrate utilization and stress tolerance. This study aimed to investigate the adaptation of a microbial consortium to enhance methane production from the pelagic Sargassum. Microbial adaptation was performed in a fed-batch mode for 100 days by progressive feeding of Sargassum. The evolution of the microbial community was analyzed by high-throughput sequencing of 16S rRNA amplicons. Additionally, 16S rRNA data were used to predict functional profiles using the iVikodak platform. The results showed that, after adaptation, the consortium was dominated by the bacterial phyla Bacteroidota, Firmicutes, and Atribacterota, as well as methanogens of the families Methanotrichaceae and Methanoregulaceae. The abundance of predicted genes related to different metabolic functions was affected during the adaptation stage when Sargassum concentration was increased. At the end of the adaptation stage, the abundance of the predicted genes increased again. The adapted microbial consortium demonstrated a 60% increase in both biomethane potential and biodegradability index. This work offers valuable insights into the development of treatment technologies and the effective management of pelagic Sargassum in coastal regions, emphasizing the importance of microbial adaptation in this context.


Assuntos
Metano , Consórcios Microbianos , RNA Ribossômico 16S , Sargassum , Metano/metabolismo , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
10.
Bioresour Technol ; 411: 131358, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191296

RESUMO

As an emerging pollutant, microplastics (MPs) have attracted increasing attention worldwide. The effects of polypropylene (PP) MPs on digestion performance, behaviors of dominant microbial communities, antibiotic resistance genes (ARGs) and mobile genetic elements in microbial anaerobic digesters were investigated. The results showed that the addition of PP-MPs to digesters led to an increase in methane production of 10.8% when 300 particles/g TSS of PP-MPs was introduced compared with that in digester not treated with PP-MPs. This increase was attributed to the enrichment of acetogens such as Syntrophobacter (42.0%), Syntrophorhabdus (27.0%), and Syntrophomonas (10.6%), and methanogens including Methanobacterium and Methanosaeta. tetX was highly enriched due to PP-MP exposure, whereas parC exhibited the greatest increase (35.5% - 222.7%). Horizontal gene transfer via ISCR1 and intI1 genes might play an important role in the spread of ARGs. Overall, these findings provide comprehensive insight into the ecological dynamics of PP-MPs during microbial anaerobic digestion.


Assuntos
Resistência Microbiana a Medicamentos , Microplásticos , Polipropilenos , Anaerobiose , Resistência Microbiana a Medicamentos/genética , Reatores Biológicos , Metano/metabolismo , Biodegradação Ambiental , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo
11.
Bioresour Technol ; 411: 131222, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39111398

RESUMO

Favourable effects of trace metals (TMs) on regulating anaerobic digestion (AD) performance are extensively utilised to improve methane yield. This study discusses a model-based approach to find out the best TM dosing strategies. The model has been applied to compare continuous, preloading, pulse dosing and in-situ loading. Simulations were also carried out to comprehend appropriate dosing form, dosing time and quantity of metals to be dosed. Model results show that the best way to dose TMs is repeated pulse dosing at low concentration levels in the optimum range with high frequency. Best dosing strategy for the system in this study was found to be 5 µM pulse loading at 5 days intervals as it gave maximum methane production and low effluent metal loss. Preferable dosing form depends on reactor configuration and this has been verified after model calibration with experimental data. Easily dissociable metal chlorides are ideal for continuous reactors.


Assuntos
Reatores Biológicos , Metais , Metano , Metano/metabolismo , Anaerobiose , Oligoelementos/metabolismo , Simulação por Computador , Modelos Teóricos
12.
Bioresour Technol ; 411: 131242, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39122126

RESUMO

Applied voltage is a crucial parameter in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) systems for enhancing methane production from waste activated sludge (WAS). This study explored the impact of applied voltage on the initial biofilm formation on electrodes during the MEC-AD startup using raw WAS (Rr) and heat-pretreated WAS (Rh). The findings indicated that the maximum methane productivity for Rr and Rh were 3.4 ± 0.5 and 3.4 ± 0.2 mL/gVSS/d, respectively, increasing 1.5 times and 2.6 times over the productivity at 0 V. The biomass on electrode biofilms for Rr and Rh at 0.8 V increased by 70 % and 100 % compared to 0 V. The core functional microorganisms in the cathode biofilm were Methanobacterium and Syntrophomonas, and Geobacter in the anode biofilm, enhancing methane production through syntrophism and direct interspecies electron transfer, respectively. These results offer academic insights into optimizing AD functional electrode biofilms by applying voltage.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Eletrólise , Metano , Metano/metabolismo , Anaerobiose/fisiologia , Fontes de Energia Bioelétrica/microbiologia , Esgotos/microbiologia , Eletricidade , Ecossistema , Reatores Biológicos/microbiologia , Biomassa
13.
Sci Total Environ ; 949: 175252, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098430

RESUMO

Management of fat, oil and grease (FOG) is crucial for the recovery of renewable resources and the protection of sewer systems. This study aims to identify the potential quantities and qualities of FOG that can be acquired through optimised grease separator (GS) management approaches in hotels and restaurants during seasonal tourism. A technical survey of 20 GS from hotels and restaurants in the federal state of Tyrol, Austria was conducted. The findings revealed that 55 % of the GS were in poor condition, often due to infrequent maintenance and limited operator's knowledge. The FOG layer quality and quantity was monitored over three years and physicochemical parameters including total residue, volatile solids, total organic carbon, lipid content, and biomethane yield, were analysed. An optimised management approach, which involved up to 4 GS emptying per season, revealed a significant increase in FOG quantity for the majority of the inspected establishments, with an overall doubling of the acquired FOG volume. Based on these results, the energy potential of GS is presented in three potential management scenarios. The energy recovered from GS increased by 246 %. This highlights the importance of proper GS management in the hospitality sector, which can play a critical role in promoting environmental sustainability and renewable energy production.


Assuntos
Biocombustíveis , Áustria , Gorduras/análise , Energia Renovável , Óleos , Restaurantes
14.
Bioresour Technol ; 410: 131280, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151565

RESUMO

Ethanol pre-fermentation of food waste effectively alleviates acidification; however, its effects on interspecies electron transfer remain unknown. This study configured the feed according to COD ratios of ethanol: sodium acetate: sodium propionate: sodium butyrate of 5:2:1.5:1.5 (ethanol-type anaerobic digestion) and 0:5:2.5:2.5 (control), and conducted semi-continuous anaerobic digestion (AD) experiments. The results showed that ethanol-type AD increased maximum tolerable organic loading rate (OLR) to 6.0 gCOD/L/d, and increased the methane production by 1.2-14.8 times compared to the control at OLRs of 1.0-5.0 gCOD/L/d. The abundance of the pilA gene, which was associated with direct interspecies electron transfer (DIET), increased by 5.6 times during ethanol-type AD. Hydrogenase genes related to interspecies hydrogen transfer (IHT), including hydA-B, hoxH-Y, hnd, ech, and ehb, were upregulated during ethanol-type AD. Ethanol-type AD improved methanogenic performance and enhanced microbial metabolism by stimulating DIET and IHT.


Assuntos
Etanol , Hidrogênio , Metano , Metano/metabolismo , Hidrogênio/metabolismo , Anaerobiose , Etanol/metabolismo , Transporte de Elétrons , Reatores Biológicos , Fermentação , Hidrogenase/metabolismo
15.
Environ Sci Ecotechnol ; 21: 100440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38993655

RESUMO

Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50-57 °C) to mesophilic (30-38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d-1, while a mild transition (MT) is a stepwise transition by 1 °C d-1. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per gyrA) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.

16.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969460

RESUMO

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Assuntos
Reatores Biológicos , Carvão Vegetal , Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Águas Residuárias/química , Carvão Vegetal/química , Suínos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Membranas Artificiais , Metano/metabolismo
17.
J Environ Manage ; 366: 121864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018837

RESUMO

This research aimed to design an integrated aerobic-anaerobic reactor with dynamic aeration that was automatically regulated based on real-time oxygen concentration and investigate the aerobic pretreatment and subsequent dry co-anaerobic digestion (co-AD) characteristics of highly solids-loaded corn stover and swine manure in terms of temperature rise, physiochemical characteristics, and methane production. The high-temperature feedstocks from the aerobic pretreatment phase rapidly entered the AD phase without transportation and effectively improved the start-up and methane production of the co-AD. Oxygen concentration range, aeration rate, and pretreatment time affected the cumulative aeration time, temperature rise, and organic matter removal interactively during aerobic pretreatment, and a low aeration rate was relatively preferable. Although the lignocellulose removal increased with the increase in pretreatment duration, the maximal lignin elimination efficiency only reached 1.30%. The inoculum injection in the transition phase from aerobic pretreatment to co-AD and the leachate reflux during co-AD were also critical for producing methane steadily apart from aerobic pretreatment. The cold air weakened the temperature rise of aerobic pretreatment, and the low-temperature leachate reduced the methane production in the co-AD process. An oxygen concentration range of 13%-17%, aeration rate of 0.10 m3/(min·m3), pretreatment time of 84 h, inoculum loading of 40%, leachate refluxing thrice per day, and double-layer inoculation were optimum for improving the integrated aerobic-anaerobic digestion system's ability to resist low temperatures and achieving high methane production. The maximal cumulative and volatile solids (VS) methane yields of corn stover and swine manure reached 444.58 L and 266.30 L/kg VS.


Assuntos
Esterco , Metano , Temperatura , Zea mays , Zea mays/metabolismo , Animais , Metano/metabolismo , Suínos , Anaerobiose , Reatores Biológicos , Aerobiose , Lignina
18.
J Environ Manage ; 366: 121867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032259

RESUMO

Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar. Results showed that the co-addition of separated biochar and AHL achieved best methane production performance, with the maximal methane yield of 154.7 mL/g volatile suspended solids, which increased by 51.9%, 47.2%, 17.9%, and 39.4% respectively compared to that of control, AHL-loaded biochar, sole AHL, and sole biochar groups. The reason was that the co-addition of separated biochar and AHL promoted the stages of hydrolysis and acidification, promoting the conversion of organic matters and short-chain fatty acids, and optimizing the accumulation of acetate acid. Moreover, the methanogenesis stage also performed best among experimental groups. Correspondingly, the highest activities of electron transfer and coenzyme F420 were obtained, with increase ratios of 33.2% and 27.2% respectively compared to that of control. Furthermore, biochar did more significant effects on the evolution of microbial communities than AHL, and the direct interspecific electron transfer between fermentative bacteria and methanogens were possibly promoted.


Assuntos
Carvão Vegetal , Metano , Percepção de Quorum , Metano/metabolismo , Anaerobiose , Esgotos , Ácidos Graxos Voláteis/metabolismo , Acil-Butirolactonas/metabolismo
19.
Environ Res ; 259: 119537, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960362

RESUMO

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.


Assuntos
Carvão Vegetal , Substâncias Húmicas , Metano , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Anaerobiose , Metano/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos
20.
Bioresour Technol ; 408: 131144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043281

RESUMO

Conductive materials (CM) enhance methanogenesis, but there is no clear correlation between conductivity and faster methane production (MP) rates. We investigated if MP by pure cultures of methanogens (Methanobacterium formicicum, Methanospirillum hungatei, Methanothrix harundinacea and Methanosarcina barkeri) is affected by CM (activated carbon (AC), magnetite), and other sustainable alternatives (sand and glass beads, without conductivity, and zeolites (Zeo)). The significant impact of the materials was on M. formicicum as MP was significantly accelerated by non-CM (e.g., sand reduced the lag phase (LP) duration by 48 %), Zeo and AC (LP reduction in 71% and 75 %, respectively). Conductivity was not correlated with LP reduction. Instead, silicon content in the materials was inversely correlated with the time required for complete MP, and silicon per se stimulated M. formicicum's activity. These findings highlight the potential of using non-CM silicon-containing materials in anaerobic digesters to accelerate methanogenesis.


Assuntos
Metano , Silício , Metano/metabolismo , Metano/biossíntese , Silício/química , Condutividade Elétrica , Areia , Vidro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA