Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116467, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761497

RESUMO

BACKGROUND: Although the changes of mitogen-activated protein kinase (MAPK) pathway in the central nervous system (CNS) induced by excessive fluoride has been confirmed by our previous findings, the underlying mechanism(s) of the action remains unclear. Here, we investigate the possibility that microRNAs (miRNAs) are involved in the aspect. METHODS: As a model of chronic fluorosis, SD rats received different concentrations of fluoride in their drinking water for 3 or 6 months and SH-SY5Y cells were exposed to fluoride. Literature reviews and bioinformatics analyses were used to predict and real-time PCR to measure the expression of 12 miRNAs; an algorithm-based approach was applied to identify multiply potential target-genes and pathways; the dual-luciferase reporter system to detect the association of miR-132-3p with MAPK1; and fluorescence in situ hybridization to detect miR-132-3p localization. The miR-132-3p inhibitor or mimics or MAPK1 silencing RNA were transfected into cultured cells. Expression of protein components of the MAPK pathway was assessed by immunofluorescence or Western blotting. RESULTS: In the rat hippocampus exposed with high fluoride, ten miRNAs were down-regulated and two up-regulated. Among these, miR-132-3p expression was down-regulated to the greatest extent and MAPK1 level (selected from the 220 genes predicted) was corelated with the alteration of miR-132-3p. Furthermore, miR-132-3p level was declined, whereas the protein levels MAPK pathway components were increased in the rat brains and SH-SY5Y cells exposed to high fluoride. MiR-132-3p up-regulated MAPK1 by binding directly to its 3'-untranslated region. Obviously, miR-132-3p mimics or MAPK1 silencing RNA attenuated the elevated expressions of the proteins components of the MAPK pathway induced by fluorosis in SH-SY5Y cells, whereas an inhibitor of miR-132-3p just played the opposite effect. CONCLUSION: MiR-132-3p appears to modulate the changes of MAPK signaling pathway in the CNS associated with chronic fluorosis.


Assuntos
Fluoretos , MicroRNAs , Proteína Quinase 1 Ativada por Mitógeno , Ratos Sprague-Dawley , MicroRNAs/genética , Animais , Ratos , Fluoretos/toxicidade , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Linhagem Celular Tumoral
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 571-577, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597449

RESUMO

OBJECTIVE: To investigate the regulatory effect of miR-132-3p on calmodulin-binding transcription activator 1 (CAMTA1) and Schwann cell activity in rats with facial nerve injury (FNI) treated with I-125 seeds. METHODS: Rat Schwann cells were irradiated with I-125 seeds and transfected with miR-132-3p mimic, miR-132-3p inhibitor or sh-CAMTA1. The expressions of S100B and ß-tubulin Ⅲ in the cells were detected with immunofluorescence assay, and the expressions of miR-132-3p and CAMTA1 protein were determined using RT-qPCR and Western blotting, respectively. EdU staining and Transwell assay were used to evaluate the changes in cell proliferation and migration ability. In a rat model of FNI, I-125 seeds were implanted into the facial tissues near the facial nerve 2 weeks before modeling, and miR-132-3p mimic was injected subcutaneously in the face after modeling. The pathologies of the facial nerve was assessed by HE, LFB and immunofluorescence staining. The targeting relationship between miR-132-3p and CAMTA1 was verified using StarBase v2.0 database and dual-luciferase reporter assay. RESULTS: Rat Schwann cells showed high expressions of S100B and ß-tubulin Ⅲ. I-125 seeds radiation significantly decreased miR-132-3p expression and repressed proliferation and migration of the cells (P < 0.001). Overexpression of miR-132-3p or CAMTA1 knockdown obviously enhanced proliferation and migration of the Schwann cells, while miR-132-3p knockdown produced the opposite effect. MiR-132-3p negatively regulated CAMTA1 expression. In the rat models of FNI, miR-132-3p injection significantly inhibited CAMTA1 expression and attenuated I-125 seeds-induced exacerbation of FNI. CONCLUSION: Overexpression of miR-132-3p suppresses CAMTA1 expression and promotes Schwann cell proliferation and migration to alleviate I-125 seeds-induced exacerbation of FNI in rats.


Assuntos
Traumatismos do Nervo Facial , MicroRNAs , Ratos , Animais , MicroRNAs/metabolismo , Radioisótopos do Iodo , Tubulina (Proteína) , Fatores de Transcrição , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral
3.
Biol Chem ; 405(2): 129-141, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36857196

RESUMO

Hepatic metastasis is a major cause of colorectal cancer (CRC)-related deaths. Presently, the role of long non-coding RNAs (lncRNAs) in hepatic metastases from CRC is elusive. We dissected possible interplay between LINC00858/miR-132-3p/IGF2BP1 via bioinformatics approaches. Subsequently we analyzed mRNA expression of LINC00858, miR-132-3p and IGF2BP1 through qRT-PCR. Western blot was used to detect protein expression of IGF2BP1. RNA immunoprecipitation chip and dual-luciferase assay validated interaction between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Cell viability, invasion, and migration were examined via CCK-8, colony formation, transwell and wound healing assays. Effect of LINC00858 on CRC hepatic metastases was validated via in vivo assay. Upregulated LINC00858 and IGF2BP1, and downregulated miR-132-3p were predicted in tumor tissues of patients with hepatic metastases from CRC. There were targeting relationships between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Besides, LINC00858 facilitated progression of CRC cells. Rescue assay suggested that silencing LINC00858 suppressed CRC cell progression, while further silencing miR-132-3p or overexpressing IGF2BP1 reversed such effects. LINC00858 could facilitate CRC tumor growth and hepatic metastases. LINC00858 induced CRC hepatic metastases via regulating miR-132-3p/ IGF2BP1, and this study may deliver a new diagnostic marker for the disease.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Cancer Sci ; 114(11): 4329-4342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37705317

RESUMO

This study aimed to determine the upstream regulatory factors affecting ribosome biogenesis regulator 1 homolog (RRS1) expression and the development and prognosis of liver hepatocellular carcinoma (LIHC). The expression profiles of RRS1 were evaluated in pan-cancer tissues and liver tumor cell lines. The associations of RRS1 with pan-cancer survival, immune infiltrations, immune checkpoints, and drug sensitivity were identified. We explored the potential upstream regulatory mechanisms of RRS1 expression. Hsa-miR-132-3p knockdown, CCK-8 assays, transwell, and wound healing assays were performed to validate the regulatory effect of hsa-miR-132-3p on RRS1 expression and the development of LIHC. Our findings demonstrated that RRS1 was significantly elevated in 27 types of cancers. RRS1 predicts a poor outcome of LIHC, lung adenocarcinoma, head and neck cancer, and kidney papillary cell carcinoma. RRS1 expression showed a significant association with immune cell infiltrates and the expression of immune checkpoints-related genes in LIHC tissues. Increased RRS1 expression may have a negative effect on these anticancer drugs of LIHC. Low methylation of the RRS1 promoter and its genomic gain may elevate RRS1 expression and predict poor prognosis for LIHC. Increased hsa-miR-132-3p expression may elevate RRS1 expression and result in poor prognosis for LIHC. Hsa-miR-132-3p inhibition can decrease RRS1 expression and the development of liver tumor cell lines. Low methylation of the RRS1 promoter, RRS1 genomic gain, and hsa-miR-132-3p upregulation in LIHC may promote RRS1 upregulation and thus lead to the development and poor prognosis for LIHC. RRS1 is a promising therapeutic target for LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Metilação , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Genômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Pulm Pharmacol Ther ; 83: 102249, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37648017

RESUMO

BACKGROUND: Acute lung injury (ALI) is a common complication of sepsis. Dihydroquercetin (DHQ) has been found to attenuate lipopolysaccharide (LPS)-induced inflammation. However, the effect of DHQ on LPS-challenged ALI remains unclear. METHODS: Pulmonary HE and TUNEL staining and lung wet/dry ratio were detected in LPS-treated Balb/c mice. IL-1ß, IL-6 and TNF-α levels were determined utilizing ELISA assay. RAW264.7 cell apoptosis and macrophage markers (CD86, CD206) were tested using flow cytometry. TC-1 viability was analyzed by MTT assay. Western blot measured protein expression of macrophage markers. Interactions of miR-132-3p, IRF4 and FBXW7 were explored utilizing ChIP, RNA pull-down and dual luciferase reporter assays. RESULTS: DHQ alleviated histopathological change, pulmonary edema and apoptosis in LPS-treated mice. DHQ affected LPS-induced M2 macrophage polarization and TC-1 cell injury-related indicators, such as decreased cell activity, decreased LDH levels, and increased apoptosis. LPS inhibited IRF4 and miR-132-3p expression, activated Notch pathway and increased FBXW7 level, which were overturned by DHQ. IRF4 transcriptionally activated miR-132-3p expression. FBXW7 was a downstream target of miR-132-3p. CONCLUSION: DHQ alleviated LPS-induced lung injury through promoting macrophage M2 polarization via IRF4/miR-132-3p/FBXW7 axis, which provides a new therapeutic strategy for ALI.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Proteína 7 com Repetições F-Box-WD , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos , MicroRNAs/genética
6.
Cell Signal ; 110: 110801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433399

RESUMO

The pathogenesis of renal ischemic diseases remains unclear. In this study, we demonstrate the induction of microRNA-132-3p (miR-132-3p) in ischemic acute kidney injury (AKI) and cultured renal tubular cells under oxidative stress. miR-132-3p mimic increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-132-3p inhibition offered protective effects. We analyzed miR-132-3p target genes through bioinformatic analysis and Sirt1 was predicted as the target gene of miR-132-3p. Luciferase microRNA target reporter assay further verified Sirt1 as a direct target of miR-132-3p. In cultured tubular cells and mouse kidneys, IRI and H2O2 treatment repressed Sirt1 and PGC-1α/NRF2/HO-1 expression, whereas anti-miR-132-3p preserved Sirt1 and PGC-1α/NRF2/HO-1 expression. In renal tubular, Sirt1 inhibitor suppressed PGC1-1α/NRF2/HO-1 expression and aggravated tubular apoptosis. Together, the results suggest that miR-132-3p induction aggravates ischemic AKI and oxidative stress by repressing Sirt1 expression, and miR-132-3p inhibition offers renal protection and may be a potential therapeutic target.


Assuntos
Injúria Renal Aguda , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Túbulos Renais/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/genética , Apoptose/genética
7.
World J Surg Oncol ; 21(1): 205, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454094

RESUMO

PURPOSE: Interstitial lung diseases (ILDs) have high morbidity and mortality and poor prognosis. The significance of microRNAs (miRNAs) was highlighted in ILDs development. Currently, we attempted to confirm the functions of lung cancer-derived exosomal miR-132-3p and reveal the underlying mechanism. METHOD: Characteristics of exosomes were verified by transmission electron microscope (TEM), nanoparticle tracking analysis, and Western blot assay. Exosome uptake for the normal human lung fibroblasts (NHLF) was assessed using a PKH67 staining assay. MTT and colony formation assays were applied to examine the proliferation abilities of NHLF. The interaction between miR-132-3p and sprouty1 (SPRY1) was confirmed by a luciferase reporter assay. RESULTS: Lung cancer-derived exosomes promoted normal human lung fibroblast activation. Exosome inhibitor GW4869 reversed the effects of Exo on NHLF. Subsequently, miR-132-3p in lung cancer-derived exosomes activated the normal human lung fibroblast and promoted interstitial lung disease development ex vivo. Next, SPRY1 was verified to be the binding protein of miR-132-3p, and sh-SPRY1 abrogated the effects of the miR-132-3p inhibitor on NHLF. CONCLUSION: Exosomal miR-132-3p from A549 cells accelerated the development of interstitial lung disease through binding to SPRY1, which might serve as an important target for ILDs.


Assuntos
Exossomos , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Exossomos/genética , Proliferação de Células
8.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3066-3073, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381965

RESUMO

This study aimed to investigate the effect of Wenyang Zhenshuai Granules(WYZSG) on autophagy and apoptosis of myocardial cells in rats with sepsis via regulating the expression of microRNA-132-3p(miR-132-3p)/uncoupling protein 2(UCP2). Sixty SD rats were randomly divided into modeling group(n=50) and sham operation group(n=10). The sepsis rat model was constructed by cecal ligation and perforation in the modeling group. The successfully modeled rats were randomly divided into WYZSG low-, medium-and high-dose groups, model group and positive control group. Rats in the sham operation group underwent opening and cecum division but without perforation and ligation. Hematoxylin-eosin(HE) staining was used to observe the pathological changes of rat myocardial tissue. Myocardial cell apoptosis was detected by TdT-mediated dUTP nick end labeling(TUNEL) assay. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression of miR-132-3p and the mRNA expressions of UCP2, microtubule-associated protein light chain 3(LC3-Ⅱ/LC3-Ⅰ), Beclin-1 and caspase-3 in rat myocardial tissue. The protein expressions of UCP2, LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 in myocardial tissue were detected by Western blot. Dual luciferase reporter assay was used to verify the regulatory relationship between miR-132-3p and UCP2. The myocardial fibers of sepsis model rats were disordered, and there were obvious inflammatory cell infiltration as well as myocardial cell edema and necrosis. With the increase of the WYZSG dose, the histopathological changes of myocardium were improved to varying degrees. Compared with the conditions in the sham operation group, the survival rate and left ventricular ejection fraction(LVEF) of rats in the model group, positive control group and WYZSG low-, medium-and high-dose groups were decreased, and the myocardial injury score and apoptosis rate were increased. Compared with the model group, the positive control group and WYZSG low-, medium-and high-dose groups had elevated survival rate and LVEF, and lowered myocardial injury score and apoptosis rate. The expression of miR-132-3p and the mRNA and protein expressions of UCP2 in myocardial tissue in the model group, positive control group and WYZSG low-, medium-and high-dose groups were lower, while the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 were higher than those in the sham operation group. Compared with model group, the positive control group and the WYZSG low-, medium-and high-dose groups had an up-regulation in the expression of miR-132-3p and the mRNA and protein expressions of UCP2, while a down-regulation in the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3. WYZSG inhibited excessive autophagy and apoptosis of myocardial cells in septic rats and improved myocardial injury, possibly by regulating the expression of miR-132-3p/UCP2.


Assuntos
Apoptose , Autofagia , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Miócitos Cardíacos , Animais , Ratos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Medicina Tradicional Chinesa , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Proteína Desacopladora 2/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
Environ Pollut ; 328: 121653, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080521

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, triggering deleterious effects such as carcinogenicity and immunosuppression, and peripheral blood mononuclear cells (PBMCs) are among the main cell types targeted by these pollutants. In the present study, we sought to identify the expression profiles and function of miRNAs, gene regulators involved in major cellular processes recently linked to environmental pollutants, in PBMC-exposed to the prototypical PAH, benzo[a]pyrene (B[a]P). Using small RNA deep sequencing, we identified several B[a]P-responsive miRNAs. Bioinformatics analyses showed that their predicted targets could modulate biological processes relevant to cell death and survival. Further studies of the most highly induced miRNA, miR-132, showed that its up-regulation by B[a]P was time- and dose-dependent and required aryl hydrocarbon receptor (AhR) activation. By evaluating the role of miR-132 in B[a]P-induced cell death, we propose a mechanism linking B[a]P-induced miR-132 expression and cytochromes P-450 (CYPs) 1A1 and 1B1 mRNA levels, which could contribute to the apoptotic response of PBMCs. Altogether, this study increases our understanding of the roles of miRNAs induced by B[a]P and provides the basis for further investigations into the mechanisms of gene expression regulation by PAHs.


Assuntos
Poluentes Ambientais , MicroRNAs , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidade , Leucócitos Mononucleares , Sistema Enzimático do Citocromo P-450 , MicroRNAs/genética , Poluentes Ambientais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
10.
Neurochem Res ; 48(8): 2514-2530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036545

RESUMO

Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Magnésio , Depressão/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Hipocampo/metabolismo
11.
Epilepsy Res ; 191: 107089, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801489

RESUMO

OBJECTIVE: MiRNAs are important gene-regulating agents in epilepsy development, according to new research. The purpose of this study is to investigate the relationship between serum expression of miR-146a-5p and miR-132-3p and epilepsy in Egyptian patients as potential diagnostic and therapeutic biomarkers. METHODS: MiR-146a-5p and miR-132-3p were measured in the serum of 40 adult epilepsy patients and 40 controls using real-time polymerase chain reaction. The comparative cycle threshold (CT) approach (2-ΔΔCT) was used to compute relative expression levels, which were normalized to cel-miR-39 expression and compared to healthy controls. The diagnostic performance of miR-146a-5p and miR-132-3p was assessed using receiver operating characteristic curve analysis. RESULTS: The relative expression levels of miR-146a-5p and miR-132-3p in serum were considerably greater in epilepsy patients than in the control group. There was a significant difference in the miRNA-146a-5p relative expression in the focal group when the non-responders were compared with the responders' groups, and a significant difference when comparing the non-responders' focal and the non-responders' generalized groups, however, univariate logistic regression analysis revealed that increased seizure frequency is the only risk factor among all factors affecting the drug response There was a significant difference in epilepsy duration between miR-132-3p high and low expression. With an area under the curve of 0.714 (95% C. I 0.598-0.830; P = 0.001), the combined miR-146a-5p and miR-132-3p serum levels performed better than each separately as a diagnostic biomarker to distinguish epilepsy patients from controls. SIGNIFICANCE: The findings imply that both miR-146a-5p and miR-132-3p may be involved in epileptogenesis regardless of epilepsy subtypes. Although the combined circulating miRNAs may be useful as a diagnostic biomarker, they are not a predictor of drug response. MiR-132-3p might be used to predict epilepsy's prognosis by demonstrating its chronicity.


Assuntos
MicroRNA Circulante , Epilepsia , MicroRNAs , Adulto , Humanos , MicroRNAs/metabolismo , Biomarcadores , Prognóstico , Curva ROC
12.
Diabetol Metab Syndr ; 15(1): 11, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698180

RESUMO

BACKGROUND: The prevalence of diabetes mellitus has risen considerably and currently affects more than 422 million people worldwide. Cardiovascular diseases including myocardial infarction and heart failure represent the major cause of death in type 2 diabetes (T2D). Diabetes patients exhibit accelerated aortic stiffening which is an independent predictor of cardiovascular disease and mortality. We recently showed that aortic stiffness precedes hypertension in a mouse model of diabetes (db/db mice), making aortic stiffness an early contributor to cardiovascular disease development. Elucidating how aortic stiffening develops is a pressing need in order to halt the pathophysiological process at an early time point. METHODS: To assess EndMT occurrence, we performed co-immunofluorescence staining of an endothelial marker (CD31) with mesenchymal markers (α-SMA/S100A4) in aortic sections from db/db mice. Moreover, we performed qRT-PCR to analyze mRNA expression of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. To identify the underlying mechanism by which EndMT contributes to aortic stiffening, we used aortas from db/db mice and diabetic patients in combination with high glucose-treated human umbilical vein endothelial cells (HUVECs) as an in vitro model of diabetes-associated EndMT. RESULTS: We demonstrate robust CD31/α-SMA and CD31/S100A4 co-localization in aortic sections of db/db mice which was almost absent in control mice. Moreover, we demonstrate a significant upregulation of EndMT transcription factors in aortic sections of db/db mice and diabetic patients. As underlying regulator, we identified miR-132-3p as the most significantly downregulated miR in the micronome of db/db mice and high glucose-treated HUVECs. Indeed, miR-132-3p was also significantly downregulated in aortic tissue from diabetic patients. We identified Kruppel-like factor 7 (KLF7) as a target of miR-132-3p and show a significant upregulation of KLF7 in aortic sections of db/db mice and diabetic patients as well as in high glucose-treated HUVECs. We further demonstrate that miR-132-3p overexpression and KLF7 downregulation ameliorates EndMT in high glucose-treated HUVECs. CONCLUSIONS: We demonstrate for the first time that EndMT contributes to aortic stiffening in T2D. We identified miR-132-3p and KLF7 as novel EndMT regulators in this context. Altogether, this gives us new insights in the development of aortic stiffening in T2D.

13.
Clin Exp Immunol ; 211(1): 57-67, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36571232

RESUMO

The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , Ativação do Complemento , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Antígenos CD55/genética , Proteínas do Sistema Complemento , Neoplasias do Colo/genética , MicroRNAs/genética , Linhagem Celular Tumoral
14.
J Ethnopharmacol ; 300: 115724, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115599

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danhong injection (DHI) is a renowned traditional Chinese medicine often used clinically to treat cardiovascular and cerebrovascular diseases. Studies have shown that DHI can significantly alter microRNA (miRNA) expression in the brain tissue. Therefore, exploring specific miRNAs' regulatory mechanisms during treatment with DHI is essential. AIM OF THE STUDY: To investigate DHI's regulatory mechanism on cerebral autophagy in rats with cerebral ischemia-reperfusion injury (CIRI). MATERIAL AND METHODS: Rats were randomly divided into the sham, middle cerebral artery occlusion (MCAO) model, and DHI-treatment groups. The extent of brain damage was evaluated using triphenyl tetrazolium chloride and hematoxylin-eosin staining. Hippocampal cell autophagy was observed using transmission electron microscopy. Autophagy-related proteins were analyzed using western blotting. Differentially expressed miRNAs were screened using high-throughput and real-time quantitative reverse transcription PCR. The relationship between miR-132-3p and ATG12 was confirmed using a dual-luciferase assay. The miR-132-3p mimics and inhibitors were transfected into PC12 cells subjected to oxygen-glucose deprivation (OGD) in vitro and MCAO model rats in vivo. RESULTS: DHI significantly altered the miRNA expression profile in rat brain tissues. The pathological changes in the brain tissues were improved, and the autophagic hippocampal cell vehicles were significantly reduced after DHI treatment. miRNA-132-3p, one of the miRNAs with a significantly different expression, was screened. Kyoto Encyclopedia of Genes and Genomes signal pathway analysis showed that its target genes were closely related to autophagy. Western blotting revealed that the p-PI3K, p-AKT, and mTOR expression increased significantly; AMPK, ULK1, ATG12, ATG16L1, and LC3II/I were downregulated in the DHI group. Dual-luciferase reporter gene experiments showed that miRNA-132-3p could target the ATG12 3'-UTR region directly. In vitro, miRNA-132-3p had a protective effect on OGD/R-induced oxidative stress injury in PC12 cells, improving cell viability, and affecting the expression of autophagy pathway-related proteins. In vivo transfection experiments showed that miR-132-3p could regulate ATG12 expression in CIRI rats' lateral brain tissue, affecting the autophagy signaling pathway. miR-132-3p overexpression reduces CIRI-induced autophagy and protects neurons. CONCLUSION: This study showed that DHI inhibits neuronal autophagy after cerebral ischemia-reperfusion. This may have resulted from miR-132-3p targeting ATG12 and regulating the autophagy signaling pathway protein expression.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Autofagia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Isquemia Encefálica/metabolismo , Cloretos , Medicamentos de Ervas Chinesas , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Glucose/farmacologia , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , MicroRNAs/metabolismo , Oxigênio/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR
15.
BMC Med Genomics ; 15(1): 249, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456979

RESUMO

BACKGROUND: The current study set out to identify the miRNA-mRNA regulatory networks that influence the radiosensitivity in esophageal cancer based on the The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. METHODS: Firstly, esophageal cancer-related miRNA-seq and mRNA-seq data were retrieved from the TCGA database, and the mRNA dataset of esophageal cancer radiotherapy was downloaded from the GEO database to analyze the differential expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) in radiosensitive and radioresistant samples, followed by the construction of the miRNA-mRNA regulatory network and Gene Ontology and KEGG enrichment analysis. Additionally, a prognostic risk model was constructed, and its accuracy was evaluated by means of receiver operating characteristic analysis. RESULTS: A total of 125 DEmiRNAs and 42 DEmRNAs were closely related to the radiosensitivity in patients with esophageal cancer. Based on 47 miRNA-mRNA interactions, including 21 miRNAs and 21 mRNAs, the miRNA-mRNA regulatory network was constructed. The prognostic risk model based on 2 miRNAs (miR-132-3p and miR-576-5p) and 4 mRNAs (CAND1, ZDHHC23, AHR, and MTMR4) could accurately predict the prognosis of esophageal cancer patients. Finally, it was verified that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR could affect the radiosensitivity in esophageal cancer. CONCLUSION: Our study demonstrated that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR were critical molecular pathways related to the radiosensitivity of esophageal cancer.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Tolerância a Radiação/genética , Bases de Dados Factuais
16.
Epileptic Disord ; 24(5): 917-927, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117315

RESUMO

Objective: Epilepsy is a chronic brain disease with recurrent seizures. Autophagy plays a crucial role in the progression of epilepsy. This study aimed to explore the function and intrinsic mechanism of the long non-coding RNA (lncRNA) UCA1/miR-132-3p/ATG16L1 axis in epilepsy via regulation of autophagy. Methods: The expression of lncRNA UCA1, miR-132-3p and ATG16L1 was measured in serum from epileptic patients by quantitative RT-PCR. A SH-SY5Y cell model was further constructed using retinoic acid to investigate the UCA1/ miR-132-3p/ATG16L1 axis by quantitative RT-PCR, western blotting, fluorescence in situ hybridisation, RNA immunoprecipitation, chromatin immunoprecipitation, and a dual-luciferase reporter gene assay. Results: In the serum of epileptic patients, the level of lncRNA UCA1 and ATG16L1 was reduced and miR-132-3p elevated, compared to controls. Similarly, in the SH-SY5Y cell model, the level of lncRNA UCA1 and ATG16L1 was reduced and miR-132-3p elevated in retinoic acid-treated cells; lncRNA UCA1 was mainly located in the cytoplasm. lncRNA UCA1 overexpression was shown to promote autophagic gene expression, which was reversed by miR-132-3p overexpression. Moreover, autophagic gene expression induced by miR-132-3p knockdown was reversed by ATG16L1 knockdown. Based on precipitation assays, lncRNA UCA1 and miR-132-3p were shown to form a complex with the transcription factor, EZH2, and miR-132-3p was shown to interact with ATG16L1 based on a luciferase assay. Finally, lncRNA UCA1 was shown to negatively regulate miR-132-3p expression, and miR-132-3p was shown to negatively regulate ATG16L1. Significance: In this cell model, lncRNA UCA1 promotes autophagic gene expression via epigenetic regulation mediated by ATG16L1 and miR-132-3p.


Assuntos
MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Epigênese Genética , Expressão Gênica , Humanos , MicroRNAs/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Tretinoína/farmacologia
17.
Inhal Toxicol ; 34(11-12): 297-303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074605

RESUMO

OBJECTIVE: Arid2-IR is a long non-coding RNA (lncRNA) that promotes renal injury, while its role in lipopolysaccharides (LPS)-induced acute lung injury (ALI) is unknown. Our preliminary sequencing analysis revealed an inverse correlation of Arid2-IR and miR-132-3p, which is known to suppress LPS-induced ALI. Therefore, Arid2-IR and miR-132-3p may interact with each other to participate in LPS-induced ALI in pneumonia. This study aimed to investigate the interaction between Arid2-IR and miR-132-3p in ALI induced by pneumonia. MATERIALS AND METHODS: Plasma samples were obtained from patients with pneumonia (n = 98) and healthy controls (n = 98) to detect the expression of circulating Arid2-IR and miR-132-3p. The correlation between them was analyzed using Pearson's correlation coefficient. The crosstalk between them in human bronchial epithelial cells (HBEpC) was analyzed through overexpression assay. MSP was applied to determine the methylation of the miR-132-3p gene. Cell viability was evaluated by 2,5-diphenyl-2H-tetrazolium bromide assay. RESULTS: Arid2-IR was highly upregulated in pneumonia group, while the expression levels of miR-132-3p decreased in pneumonia group compared to that in the controls. Arid2-IR and miR-132-3p were inversely correlated across patient samples. Overexpression of Arid2-IR decreased the expression levels of miR-132-3p in HBEpCs and increased the methylation of miR-132-3p gene. Arid2-IR suppressed the role of miR-132-3p in increasing the viability of HBEpCs induced by LPS. DISCUSSION AND CONCLUSION: Arid2-IR is upregulated in pneumonia and may downregulate miR-132-3p by increasing its methylation to decrease cell viability, thereby promoting LPS-induced ALI in pneumonia.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Pneumonia , RNA Longo não Codificante , Humanos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Apoptose , Lipopolissacarídeos/toxicidade , Metilação , MicroRNAs/genética , Pneumonia/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Stem Cell Res Ther ; 13(1): 315, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841005

RESUMO

BACKGROUND/AIMS: Vascular dementia (VD) results in cognition and memory deficit. Exosomes and their carried microRNAs (miRs) contribute to the neuroprotective effects of mesenchymal stromal cells, and miR-132-3p plays a key role in neuron plasticity. Here, we investigated the role and underlying mechanism of MSC EX and their miR-132-3p cargo in rescuing cognition and memory deficit in VD mice. METHODS: Bilateral carotid artery occlusion was used to generate a VD mouse model. MiR-132-3p and MSC EX levels in the hippocampus and cortex were measured. At 24-h post-VD induction, mice were administered with MSC EX infected with control lentivirus (EXCon), pre-miR-132-3p-expressing lentivirus (EXmiR-132-3p), or miR-132-3p antago lentivirus (EXantagomiR-132-3p) intravenously. Behavioral and cognitive tests were performed, and the mice were killed in 21 days after VD. The effects of MSC EX on neuron number, synaptic plasticity, dendritic spine density, and Aß and p-Tau levels in the hippocampus and cortex were determined. The effects of MSC EX on oxygen-glucose deprivation (OGD)-injured neurons with respect to apoptosis, and neurite elongation and branching were determined. Finally, the expression levels of Ras, phosphorylation of Akt, GSK-3ß, and Tau were also measured. RESULTS: Compared with normal mice, VD mice exhibited significantly decreased miR-132-3p and MSC EX levels in the cortex and hippocampus. Compared with EXCon treatment, the infusion of EXmiR-132-3p was more effective at improving cognitive function and increasing miR-132-3p level, neuron number, synaptic plasticity, and dendritic spine density, while decreasing Aß and p-Tau levels in the cortex and hippocampus of VD mice. Conversely, EXantagomiR-132-3p treatment significantly decreased miR-132-3p expression in cortex and hippocampus, as well as attenuated EXmiR-132-3p treatment-induced functional improvement. In vitro, EXmiR-132-3p treatment inhibited RASA1 protein expression, but increased Ras and the phosphorylation of Akt and GSK-3ß, and decreased p-Tau levels in primary neurons by delivering miR-132-3p, which resulted in reduced apoptosis, and increased neurite elongation and branching in OGD-injured neurons. CONCLUSIONS: Our studies suggest that miR-132-3p cluster-enriched MSC EX promotes the recovery of cognitive function by improving neuronal and synaptic dysfunction through activation of the Ras/Akt/GSK-3ß pathway induced by downregulation of RASA1.


Assuntos
Disfunção Cognitiva , Demência Vascular , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Antagomirs/metabolismo , Demência Vascular/genética , Demência Vascular/metabolismo , Demência Vascular/terapia , Exossomos/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Arch Oral Biol ; 142: 105511, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878435

RESUMO

OBJECTIVE: This study aimed to investigate the role of miR-132-3p in the progression of temporomandibular joint osteoarthritis (TMJOA) and its potential pathological mechanism. DESIGN: A TMJOA model was established using six rats via the unilateral anterior crossbite method. The differential expression of miR-132-3p in the TMJOA (n = 6) and control groups (n = 6) was detected via miRNA sequencing and verified via PCR. The chondrocytes in the condylar cartilage of the temporomandibular joint were cultured and stimulated with IL-1ß to simulate TMJOA in vitro. The changes in the proliferation, apoptosis, inflammation and extracellular matrix of these chondrocytes were detected after the upregulation of miR-132-3p expression. The targeted relationship of miR-132-3p and PTEN in TMJOA was verified, and rescue experiments were conducted via co-upregulation of the expression of both miR-132-3p and PTEN. RESULTS: Compared with that in the control group, miR-132-3p expression was lower in the cartilage tissues of TMJOA rats and IL-1ß-induced TMJ chondrocytes. After upregulating the expression of miR-132-3p, the cell proliferation activity and expression levels of aggrecan and type II collagen of IL-1ß-induced TMJ chondrocytes were increased, and the apoptosis rate and levels of inflammatory factors were decreased. miR-132-3p can regulate PTEN expression in a targeted manner, and upregulating PTEN expression could reverse the influences of the upregulation of miR-132-3p expression on TMJOA cells. CONCLUSION: miR-132-3p is less expressed in TMJOA, and it regulates the proliferation, extracellular matrix, and inflammatory response of TMJOA chondrocytes and participates in TMJOA progression by targeting PTEN.


Assuntos
MicroRNAs , Osteoartrite , Animais , Apoptose/genética , Cartilagem/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , MicroRNAs/genética , Osteoartrite/patologia , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Articulação Temporomandibular/metabolismo
20.
Front Pharmacol ; 13: 874696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662705

RESUMO

Quercetin can significantly inhibit the progression of colorectal cancer (CRC). However, its specific mechanism remains largely unclear. In this study, we aimed to explore the correlation among quercetin, tumour-associated macrophages (TAMs) and circular RNAs (circRNAs) in the progression of CRC and to present a novel strategy for the treatment of CRC. In this study, we revealed that quercetin could suppress the autophagy of M2-TAMs and induced their differentiation into M1-TAMs, by which quercetin significantly reversed the inhibition of M2-TAMS on CRC cell apoptosis and the promotion of M2-TAMS on CRC cell proliferation. Moreover, quercetin could promote the expression of downregulated hsa_circ_0006990 in CRC cells co-cultured with M2-TAMs, and the overexpression of hsa_circ_0006990 significantly reversed the anti-tumour effect of quercetin on CRC. Furthermore, we found quercetin can notably suppress the progression of CRC via mediation of the hsa_circ_0006990/miR-132-3p/MUC13 axis. In conclusion, our results suggested that quercetin inhibits the tumorigenesis of CRC via inhibiting the polarisation of M2 macrophages and downregulating hsa_circ_0006990. Our study provides useful insights for those exploring new methods of treating CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA