Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Brain Behav Immun ; 122: 167-184, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142421

RESUMO

Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.

2.
Gut Microbes ; 16(1): 2390720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39167701

RESUMO

Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.


Assuntos
Bactérias , Bacteriófagos , Microbioma Gastrointestinal , Humanos , Bacteriófagos/fisiologia , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/virologia , Bactérias/classificação , Terapia por Fagos , Prófagos/fisiologia , Prófagos/genética
3.
Foods ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063311

RESUMO

The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38935259

RESUMO

As the population ages, cognitive decline becomes more common. Strategies targeting the gut-brain axis using probiotics are emerging to achieve improvements in neuropsychiatric and neurological disorders. However, the beneficial role of probiotics on brain function in healthy older adults remains unclear. Our aim was to evaluate a multi-species probiotic formulation as a therapeutic approach to reduce emotional and cognitive decline associated with aging in healthy adults. A randomized double-blind placebo-controlled crossover trial was conducted. The study involved a 10-week intervention where participants consumed the assigned probiotic product daily, followed by a 4-week washout period before the second condition started. Cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Psychological Experiments Construction Language Test Battery. At the emotional level, the Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory (STAI) were used. Thirty-three participants, recruited between July 2020 and April 2022, ingested a multispecies probiotic (Lactobacillus rhamnosus and Bifidobacterium lactis). After the intervention, noticeable enhancements were observed in cognitive function (mean difference 1.90, 95% CI 1.09 to 2.70, p < 0.005), memory (mean difference 4.60, 95% CI 2.91 to 6.29, p < 0.005) by MMSE and digit task, and depressive symptoms (mean difference 4.09, 95% CI 1.70 to 6.48, p < 0.005) by BDI. Furthermore, there were significant improvements observed in planning and problem-solving skills, selective attention, cognitive flexibility, impulsivity, and inhibitory ability. Probiotics administration improved cognitive and emotional function in older adults. Limited research supports this, requiring more scientific evidence for probiotics as an effective therapy for cognitive decline. This study has been prospectively registered at ClinicalTrials.gov (NCT04828421; 2020/July/17).

5.
Curr Vasc Pharmacol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779729

RESUMO

BACKGROUND: Targeting gut dysbiosis to treat chronic diseases or to alleviate the symptoms is a new direction for medical adjuvant therapies. Recently, postbiotics have received considerable attention as they are non-viable probiotic preparations that confer various health benefits to the host without the safety problems associated with using live microbial cells. OBJECTIVE: The aim of the study is to obtain selenium (Se) and zinc (Zn) enriched Saccharomyces boulardii postbiotic biomass and to analyze its modulation effect because these minerals play an important role in reducing gut dysbiosis linked to cardiovascular (CV) diseases. METHOD: The effect of the S. boulardii and Se/Zn enriched yeast postbiotics on CV microbial fingerprint was studied in vitro using the gastrointestinal system (GIS 1) and analyzed by microbiological, chemical, and qPCR methods. RESULT: There was a 2.2 log CFU/mL increase in the total bacterial load after SeZn postbiotic treatment and in the qPCR counts of Firmicutes phyla for both treatments. Beneficial taxa, Bifidobacterium spp. and Lactobacillus spp., as well as Bacteroides spp. were up to 1.5 log higher after mineral- enriched postbiotic application, while the acetic acid level increased. CONCLUSION: These preliminary studies highlight the therapeutic potential of using Se/Zn enriched yeast postbiotics as adjuvants for clinical treatments of CV diseases.

6.
Front Vet Sci ; 11: 1350151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638639

RESUMO

Introduction: Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods: For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion: No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.

7.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541738

RESUMO

Vine-growing for the production of wine is one of the oldest and most important agricultural activities worldwide, but the winemaking process leads to vast amounts of waste. Viticulture and vinification by-products have many bioactive molecules, including polyphenols, prebiotic fibers, organic acids, and minerals. While research on the specific human health effects of grapevine residues (pomace, seeds, barks, stalks, canes, and leaves) is still ongoing, the available data suggest the potential to positively modulate the normal and dysbiotic gut microbiota (GM) using polyphenol-rich extracts obtained from winery by-products. This review provides an updated summary of the in vitro and in vivo evidence in animal models and humans concerning the ability of polyphenol-rich winery residue to be used as a GM modulator that supports their nutraceutical applications as a functional ingredient. Additionally, this review aims to enhance interest in viticulture waste (grapevine stems and leaves), as the levels of polyphenols are similar to those found in red grapes or seeds. However, more research is still needed to obtain innovative products. The valorization of winery residues is not only environmentally friendly; it can also be economically beneficial, creating added-value nutraceuticals that modulate microbiota and a new revenue stream for wine producers.

8.
Carbohydr Polym ; 333: 121978, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494231

RESUMO

Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on ß-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.


Assuntos
Agaricales , Anti-Infecciosos , Microbioma Gastrointestinal , Animais , Humanos , Prebióticos , Polissacarídeos/farmacologia , Polissacarídeos/química , Quitina/farmacologia , Glucanos/farmacologia , Anti-Infecciosos/farmacologia
9.
Animals (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473066

RESUMO

Chronic inflammatory enteropathies (CIEs) in dogs are currently classified based on response to sequential treatment trials into food-responsive (FREs); antibiotic-responsive (AREs); immunosuppressant-responsive (IREs); and non-responsive enteropathies (NREs). Recent studies have reported that a proportion of NRE dogs ultimately respond to further dietary trials and are subsequently misclassified. The FRE subset among CIEs is therefore probably underestimated. Moreover, alterations in the gut microbiota composition and function (dysbiosis) have been shown to be involved in CIE pathogenesis in recent research on dogs. Metronidazole and other antibiotics that have been used for decades for dogs with AREs have been demonstrated to result in increased antimicrobial resistance and deleterious effects on the gut microbiota. As a consequence, the clinical approach to CIEs has evolved in recent years toward the gradual abandonment of the use of antibiotics and their replacement by other treatments with the aim of restoring a diverse and functional gut microbiota. We propose here to refine the classification of canine CIEs by replacing the AREs category with a microbiota-related modulation-responsive enteropathies (MrMREs) category.

10.
Animals (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473129

RESUMO

Postbiotics are innovative tools in animal husbandry, providing eco-friendly solutions for disease management within the industry. In this study, a new postbiotic product was evaluated for its impact on the health of rainbow trout (Oncorhynchus mykiss). In vivo studies were conducted to assess the safety of the Weissella cibaria strains used in postbiotic production. Additionally, this study evaluated the impact of diet supplementation with 0.50% postbiotics on growth performance during a 30-day feeding trial; the gut microbial communities, immunomodulation, and protection against Yersinia ruckeri infection were evaluated. The strains did not harm the animals during the 20-day observation period. Furthermore, the effect of postbiotics on growth performance was not significant (p < 0.05). The treated group showed a significant increase in acid-lactic bacteria on the 30th day of the feeding trial, with counts of 3.42 ± 0.21 log CFU/mL. Additionally, there was an up-regulation of the pro-inflammatory cytokine IL-1ß in head kidney samples after 48 h of feed supplementation, whereas cytokines IL-10, IL-8, INF-γ, and TNF-α were down-regulated. The findings indicate that rainbow trout fed with postbiotics saw an improvement in their survival rate against Y. ruckeri, with a 20.66% survival improvement in the treated group. This study proves that incorporating postbiotics from two strains of W. cibaria previously isolated from rainbow trout into the diet of fish has immunomodulatory effects, enhances intestinal microbial composition, and improves fish resistance against Y. ruckeri.

11.
Bioact Mater ; 35: 167-180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318229

RESUMO

Reactive oxygen species (ROS), immune dysregulation-induced inflammatory outbreaks and microbial imbalance play critical roles in the development of inflammatory bowel disease (IBD). Herein, a novel enzyme-like biomimetic oral-agent ZnPBA@YCW has been developed, using yeast cell wall (YCW) as the outer shell and zinc-doped Prussian blue analogue (ZnPBA) nanozyme inside. When orally administered, the ZnPBA@YCW is able to adhere to Escherichia coli occupying the ecological niche in IBD and subsequently release the ZnPBA nanozyme for removal of E. coli, meanwhile exhibiting improved intestinal epithelial barrier repair. Moreover, it is found that the ZnPBA nanozyme exhibits remarkable capability in restoring redox homeostasis by scavenging ROS and inhibiting NF-κB signaling pathway. More importantly, the 16S ribosomal RNA gene sequencing results indicate that post-oral of ZnPBA@YCW can effectively regulate gut microbiota by enhancing the bacterial richness and diversity, significantly increasing the abundance of probiotics with anti-inflammatory phenotype while downgrading pathogenic E. coli to the same level as normal mice. Such a novel nanomedicine provides a new idea for efficient treating those ROS-mediated diseases accompanying with flora disorders.

12.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139030

RESUMO

Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.


Assuntos
Microbioma Gastrointestinal , Microbiota , Células Neoplásicas Circulantes , Humanos , Animais , Camundongos , Células Neoplásicas Circulantes/patologia , Carcinogênese , Sistema Imunitário/patologia
13.
Cancer Biol Med ; 21(2)2023 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-38148326

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and aggressive liver malignancy. The interplay between bile acids (BAs) and the gut microbiota has emerged as a critical factor in HCC development and progression. Under normal conditions, BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs. The gut microbiota plays a critical role in BA metabolism, and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis. Of note, dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis, thereby leading to liver inflammation and fibrosis, and ultimately contributing to HCC development. Therefore, understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis. In this review, we comprehensively explore the roles and functions of BA metabolism, with a focus on the interactions between BAs and gut microorganisms in HCC. Additionally, therapeutic strategies targeting BA metabolism and the gut microbiota are discussed, including the use of BA agonists/antagonists, probiotic/prebiotic and dietary interventions, fecal microbiota transplantation, and engineered bacteria. In summary, understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Ácidos e Sais Biliares , Neoplasias Hepáticas/terapia
14.
Biomedicines ; 11(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37893086

RESUMO

Hypertension is a frequent comorbidity in patients with heart failure; therefore, blood pressure management for these patients is widely recommended in medical guidelines. Bee pollen and postbiotics that contain inactivated probiotic cells and their metabolites have emerged as promising bioactive compounds sources, and their potential role in mitigating cardiovascular (CV) risks is currently being unveiled. Therefore, this preliminary study aimed to investigate the impact of a lactic-fermented bee pollen postbiotic (FBPP) on the CV microbiota via in vitro tests. A new isolated Lactobacillus spp. strain from the digestive tract of bees was used to ferment pollen, obtaining liquid and dried atomized caps postbiotics. The modulating effects on a CV microbiota that corresponds to the pathophysiology of hypertension were investigated using microbiological methods and qPCR and correlated with the metabolic profile. Both liquid and dried FBPPs increased the number of the beneficial Lactobacillus spp. and Bifidobacterium spp. bacteria by up to 2 log/mL, while the opportunistic pathogen E. coli, which contributes to CV pathogenesis, decreased by 3 log/mL. The short-chain fatty acid (SCFA) profile revealed a significant increase in lactic (6.386 ± 0.106 g/L) and acetic (4.284 ± 0.017 g/L) acids, both with known antihypertensive effects, and the presence of isovaleric acid, which promotes a healthy gut microbiota. Understanding the impact of the FBPP on gut microbiota could lead to innovative strategies for promoting heart health and preventing cardiovascular diseases.

15.
Nutrients ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764662

RESUMO

The nature and composition of the waste produced by food industrial processing make its abundance and accumulation an environmental problem. Since these by-products may present a high potential for revalorization and may be used to obtain added-value compounds, the main goals of the technological advancements have been targeted at reducing the environmental impact and benefiting from the retrieval of active compounds with technological and health properties. Among the added-value substances, nondigestible carbohydrates have demonstrated promise. In addition to their well-known technological properties, they have been discovered to modify the gut microbiota and enhance immune function, including the stimulation of immune cells and the control of inflammatory reactions. Furthermore, the combination of these compounds with other substances such us phenols could improve their biological effect on different noncommunicable diseases through microbiota modulation. In order to gain insight into the implementation of this combined strategy, a broader focus concerning different aspects is needed. This review is focused on the optimized green and advanced extraction system applied to obtain added-value nondigestible carbohydrates, the combined administration with phenols and their beneficial effects on microbiota modulation intended for health and/or illness prevention, with particular emphasis on noncommunicable diseases. The isolation of nondigestible carbohydrates from by-products as well as in combination with other bioactive substances could provide an affordable and sustainable source of immunomodulatory chemicals.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças não Transmissíveis , Humanos , Hexoses , Fenóis
16.
Animals (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760240

RESUMO

Probiotic supplementation in dairy cattle has achieved several beneficial effects (improved growth rate, immune response, and adequate ruminal microbiota). This study assessed the effects on the growth parameters and gut microbiota of newborn dairy calves supplemented with two Lactobacillus-based probiotics, individually (6BZ or 6BY) or their combination (6BZ + 6BY), administrated with the same concentration (1 × 109 CFU/kg weight) at three times, between days 5 and 19 after birth. The control group consisted of probiotic-unsupplemented calves. Growth parameters were recorded weekly until eight weeks and at the calves' ages of three, four, and five months. Fecal microbiota was described by high-throughput sequencing and bioinformatics. Although no significant effects were observed regarding daily weight and height gain among probiotic-supplemented and non-supplemented calves, correlation analysis showed that growth rate was maintained until month 5 through probiotic supplementation, mainly when the two-strain probiotics were supplied. Modulation effects on microbiota were observed in probiotic-supplemented calves, improving the Bacteroidota: Firmicutes and the Proteobacteria ratios. Functional prediction by PICRUSt also showed an increment in several pathways when the two-strain probiotic was supplemented. Therefore, using the three-administration scheme, the two-strain probiotic improved the growth rate and gut microbiota profile in newborn dairy calves. However, positive effects could be reached by applying more administrations of the probiotic during the first 20 days of a calf's life.

17.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37627550

RESUMO

Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1-5' AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level.

18.
Front Immunol ; 14: 1168818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388748

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage and synovial inflammation and carries an enormous public health and economic burden. It is crucial to uncover the potential mechanisms of OA pathogenesis to develop new targets for OA treatment. In recent years, the pathogenic role of the gut microbiota in OA has been well recognized. Gut microbiota dysbiosis can break host-gut microbe equilibrium, trigger host immune responses and activate the "gut-joint axis", which aggravates OA. However, although the role of the gut microbiota in OA is well known, the mechanisms modulating the interactions between the gut microbiota and host immunity remain unclear. This review summarizes research on the gut microbiota and the involved immune cells in OA and interprets the potential mechanisms for the interactions between the gut microbiota and host immune responses from four aspects: gut barrier, innate immunity, adaptive immunity and gut microbiota modulation. Future research should focus on the specific pathogen or the specific changes in the gut microbiota composition to identify the related signaling pathways involved in the pathogenesis of OA. In addition, future studies should include more novel interventions on immune cell modifications and gene regulation of specific gut microbiota related to OA to validate the application of gut microbiota modulation in the onset of OA.


Assuntos
Microbioma Gastrointestinal , Osteoartrite do Joelho , Humanos , Inflamação , Imunidade Adaptativa , Disbiose
19.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370753

RESUMO

Pancreatic cancer (PC) has an unfavorable prognosis with few effective therapeutic options. This has led researchers to investigate the possible links between microbiota and PC. A disrupted gut microbiome can lead to chronic inflammation, which is involved in the pathogenesis of PC. In addition, some bacterial strains can produce carcinogens that promote the growth of cancer cells. Research has also focused on pancreatic and oral microbiota. Changes in these microbiota can contribute to the development and progression of PC. Furthermore, patients with periodontal disease have an increased risk of developing PC. The potential use of microbiota as a prognostic marker or to predict patients' responses to chemotherapy or immunotherapy is also being explored. Overall, the role of microbiota-including the gut, pancreatic, and oral microbiota-in PC is an active research area. Understanding these associations could lead to new diagnostic and therapeutic targets for this deadly disease.

20.
Probiotics Antimicrob Proteins ; 15(4): 1049-1061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37349622

RESUMO

Heart failure (HF) is a global pandemic with increasing prevalence and mortality rates annually. Its main cause is myocardial infarction (MI), followed by rapid cardiac remodeling. Several clinical studies have shown that probiotics can improve the quality of life and reduce cardiovascular risk factors. This systematic review and meta-analysis aimed to investigate the effectiveness of probiotics in preventing HF caused by a MI according to a prospectively registered protocol (PROSPERO: CRD42023388870). Four independent evaluators independently extracted the data using predefined extraction forms and evaluated the eligibility and accuracy of the studies. A total of six studies consisting of 366 participants were included in the systematic review. Probiotics are not significant in intervening left ventricular ejection fraction (LVEF) and high-sensitivity C-reactive protein (hs-CRP) when compared between the intervention group and the control group due to inadequate studies supporting its efficacy. Among sarcopenia indexes, hand grip strength (HGS) showed robust correlations with the Wnt biomarkers (p < 0.05), improved short physical performance battery (SPPB) scores were also strongly correlated with Dickkopf-related protein (Dkk)-3, followed by Dkk-1, and sterol regulatory element-binding protein 1 (SREBP-1) (p < 0.05). The probiotic group showed improvement in total cholesterol (p = 0.01) and uric acid (p = 0.014) compared to the baseline. Finally, probiotic supplements may be an anti-inflammatory, antioxidant, metabolic, and intestinal microbiota modulator in cardiac remodeling conditions. Probiotics have great potential to attenuate cardiac remodeling in HF or post-MI patients while also enhancing the Wnt signaling pathway which can improve sarcopenia under such conditions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Sarcopenia , Humanos , Antioxidantes , Qualidade de Vida , Volume Sistólico , Força da Mão , Remodelação Ventricular , Função Ventricular Esquerda , Ensaios Clínicos Controlados Aleatórios como Assunto , Anti-Inflamatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA