Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17616, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080472

RESUMO

Because of the lack of good seedling positioning during vegetable grafting, there are issues such as high labor costs and long grafting time. This article proposes a negative pressure suction seedling positioning method for seed leaves based on the characteristic parameters of cucumber spike wood, and designs a flexible adsorption positioning mechanism for spike wood. Firstly, the ventral surface curve trajectories of cucumber cotyledons were extracted using Matlab software, and then a shape-adaptive design was applied to the attachment surface of the flexible suction positioning mechanism, and a computational fluid dynamics model of the airflow field was established. By combining Fluent simulation analysis with orthogonal experiments, the effect of suction hole diameter, vacuum negative pressure value, suction hole quantity, and suction hole depth on the adsorption effect of the suction head was analyzed, the main and secondary factors and operational indicators that affect the adsorption effect are evaluated. The optimal parameter combination: suction hole diameter of 1.5 mm, vacuum negative pressure value of 2 kPa, suction hole quantity of 42, and suction hole depth of 2 mm, has been found. A verification experiment was conducted on a test bench, and the experimental results show that the success rate of leaf absorption using the optimal parameter combination is 97.69%, which indicates that the suction head is designed reasonably and meets the requirements of grafting.


Assuntos
Cucumis sativus , Folhas de Planta , Simulação por Computador , Adsorção , Verduras , Plântula , Vácuo
2.
Materials (Basel) ; 13(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722410

RESUMO

In repairing or replacing damaged bones, a dual concentric porous titanium scaffold (P-Tix-y) has emerged as a promising bio-mimic design. Herein, various P-Tix-y were made and sintered with relatively dense (x = 10, 20, or 30% porosity) and loose (y = 45, 55, or 65 porosity) structures. Firstly, NaCl was used as the pore-forming additive and followed by a hydrothermal removal method. The compressive strength of the as-formed P-Tix_y and surface morphology, nanomechanical property, and cells' affinity on the cross-sectioned surface of P-Tix_y (CP-Tix_y) were then characterized. The results demonstrate that the compressive strength of P-Ti10_45, P-Ti20_45, or P-Ti20_55 exhibits a relatively mild decline (e.g., in the range of 181 and 97 MPa, higher than the required value of 70 MPa) and suitable porosities for the intended structure. Nano-hardness on the solid surface of CP-Tix_y shows roughly consistent with that of CP-Ti (i.e., ~8.78 GPa), thus, the porous structure of CP-Tix_y remains mostly unaffected by the addition of NaCl and subsequent sintering process. Most of the surfaces of CP-Tix_y exhibit high fibroblast (L929) cell affinity with low cell mortality. Notably, in the hFOB 1.19 cell adhesion and proliferation test, CP-Ti20_55 and CP-Ti20_65 reveal high cell viability, most probably relating with the assembly of dual porosities with interconnected pores. Overall, the sample P-Ti20_55 provides a relatively load-bearable design with high cell affinity and is thus promising as a three-dimensional bio-scaffold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA