RESUMO
Annually, over 5 billion metric tons of tailings are produced worldwide as byproducts of mining processes, posing significant environmental risks due to their potential to pollute and disrupt ecosystems. Concurrently, the production of portland cement (PC), the primary binder in cementitious materials is a major contributor to global anthropogenic carbon dioxide emissions. With the escalating demand for PC, a corresponding surge in carbon emissions is inevitable. Alkali-activated materials (AAMs) present a greener alternative to PC, given their production primarily utilizes industrial wastes. Traditional precursors for AAMs, such as fly ash and slag, however, are not universally available-Canada, for instance, faces a scarcity of fly ash for AAM production. In response to the dual challenges of managing mine tailings and reducing PC's environmental footprint, this review proposes the innovative use of mine tailings as an alternative binder to PC. This paper offers a thorough examination of mine tailings' properties, methodologies to enhance their suitability for AAM synthesis, and an analysis of AAMs produced from diverse tailing sources. Additionally, this paper explores the associated challenges and future prospects, providing a rounded overview of this promising avenue in sustainable construction materials.
RESUMO
Rising global metal demand has led to extensive mining, leaving post-mining landscapes with degraded soil and metal contamination. The exacerbated heavy metals concentrations deteriorate soil microbial activity and consequent microbial biomass, enzymatic activities, and organic matter are impaired. This study explores nature-based solutions, focusing on assisted natural remediation and organo-mineral amendments: marble waste (Mw), clay (Cy), and compost (Cp). Lupinus angustifolius L., a key bioremediator, is highlighted for its role in mine rehabilitation, adaptation to extreme edaphic conditions, and contribution to enhanced nutritional status. The specific aim of this study is to evaluate the synergetic impact of the use of L. angustifolius with four soil combined treatments (Com): Com1: Cy2.5-Cp2.5-Mw10; Com2: Cy2.5-Cp5-Mw5; Com3: Cy7.5-Cp2.5-Mw7.5; and Com4: Cy10-Cp10-Mw10. As a practical approach to sustainable mining soil rehabilitation, it emphasizes soil microbial biomass and activity, soil fertility, plant growth, and heavy metal immobilization in a concise and impactful manner. These combinations were used as the soil substrate material for a four-month greenhouse experiment where plant growth parameters, heavy metal accumulation, soil properties, microbial activity, and bioavailable metal content were determined. The study underscored the positive effects of the treatments Com1, Com3, and Com4 on heavy metal mobility, microbial biomass, and carbon, nitrogen, and phosphorus-acquiring enzymes. Notably, bioavailable heavy metals were effectively reduced, with copper, zinc, and lead decreasing up to 2-fold, 2-fold, and 1.8-fold, respectively. Microbial biomass and soil enzyme activities responded positively to our amendments, indicating improved nutrient cycling. Microbial biomass carbon increased up to 4-fold, and similarly, ß-glucosidase, N-acetyl-ß-glucosaminidases, L-Arginase, and acid phosphatase (Pho) increased up to 1.9-fold, 47-fold, 12.85-fold, and 2-fold, respectively. Furthermore, soil carbon and nitrogen contents increased up to 11.15-fold and 9.41-fold, respectively. This study suggested a positive and impactful influence on the intricate processes of soil carbon and nitrogen cycling, indicative of increased microbial activity, and offered a nature-based solution to mitigate the environmental impact of extensive mining.
RESUMO
Arsenic (As) and antimony (Sb), two toxic metal(loid)s, behave similarly and commonly occur in mine tailings. Yet, responses of microbes to As and Sb co-contamination in tailings dam failure-affected area remain limited. Herein, soil microbiomes (archaea, bacteria and fungi) across two contrasting sites (tailing-contaminated farmland and nearby undisturbed forestland) at a Sb-Au mining district in Chizhou, China were investigated by high-throughput sequencing. Results showed that As and Sb occurred mainly in the residual form, accounting for 55.82 % and 52.04 %, respectively. The bioavailable form was 12.77 % and 10.39 % in contaminated farmland compared to 13.31 % and 11.66 % in undisturbed forestland, respectively. Contrary to archaea and fungi, bacterial alpha-diversity significantly increased in contaminated farmland. The taxa-taxa interactions in archaea were most robust, followed by bacteria; and fungi were the weakest, which was corresponding to the habitat niche breadth. Microbial communities were affected by the deterministic processes with a modified stochasticity ratio (MST) value of 36.36 %, whereas more stochasticity (MST = 49.71 %) was raised in contaminated farmland than in undisturbed forestland (MST = 36.98 %). The microbial function based on taxonomy-based inference indicated that nitrogen and carbon metabolisms associated with archaea and bacteria increased in contaminated farmland, as well as plant pathogen, wood saprotroph and endophyte related with fungi. The turnover of soil microbiomes was tightly correlated with As and Sb speciation. Collectively, this study reveals that the soil microbial survival strategies to As-Sb co-contamination after dam failure, providing guidance for the development of bioremediation and tailings management strategies.
RESUMO
Dispersion of potentially toxic elements associated with efflorescent crusts and mine tailings materials from historical mine sites threaten the environment and human health. Limited research has been done on traceability from historical mining sites in arid and semi-arid regions. Pb isotope systematics was applied to decipher the importance of identifying the mixing of lead sources involved in forming efflorescent salts and the repercussions on traceability. This research assessed mine waste (sulfide-rich and oxide-rich tailings material and efflorescent salts) and street dust from surrounding settlements at a historical mining site in northwestern Mexico, focusing on Pb isotope composition. The isotope data of tailings materials defined a trending line (R2 = 0.9); the sulfide-rich tailings materials and respective efflorescent salts yielded less radiogenic Pb composition, whereas the oxide-rich tailings and respective efflorescent salts yielded relatively more radiogenic compositions, similar to the geogenic component. The isotope composition of street dust suggests the dispersion of tailings materials into the surroundings. This investigation found that the variability of Pb isotope composition in tailings materials because of the geochemical heterogeneity, ranging from less radiogenic to more radiogenic, can add complexity during environmental assessments because the composition of oxidized materials and efflorescent salts can mask the geogenic component, potentially underestimating the influence on the environmental media.
Assuntos
Poeira , Isótopos , Chumbo , Mineração , Chumbo/análise , Isótopos/análise , Poeira/análise , México , Monitoramento Ambiental , Poluentes do Solo/análiseRESUMO
The presence of heavy metals in mine tailings poses a serious threat to the surrounding environment. In this study, we aimed to stabilize Pb/Zn-containing mine tailings using modified fly ash (FA) with various alkali solutions. Notably, the modification of FA with Na2SiO3 (NaSi-FA) resulted in the most significant structure changes. To understand the adsorption mechanism of Pb and Zn by modified FA, batch adsorption experiments were conducted. Doubling the adsorption capacity for both Pb and Zn was observed in the modified FA samples compared to unmodified samples. These results could be attributed to the enhanced surface area and porous structure, providing more anchor sites for the heavy metal ions. Additionally, the adsorption of Pb and Zn was found to follow the Langmuir isotherm and pseudo-second order kinetic. Molecular dynamics simulations further supported the notion that Pb and Zn ions could effectively exchange with Na ions within the N-A-S-H gel network, ultimately solidifying them in its structure. Stabilizing Pb/Zn tailings with NaSi-FA resulted in a significant decrease in the leaching of Pb and Zn. Specifically, the leading amount decreased by 55.2% for Pb and 35.3% for Zn, showcasing the superior performance of this stabilization method. This reduction in leaching indicates effective compliance with environmental regulations regarding the containment of Pb and Zn.
Assuntos
Cinza de Carvão , Chumbo , Mineração , Zinco , Cinza de Carvão/química , Chumbo/química , Zinco/química , Adsorção , Metais Pesados/químicaRESUMO
The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais , Mineração , Poluentes Atmosféricos/análise , Metais/análise , Poeira/análise , Material Particulado/análise , HumanosRESUMO
Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.
Assuntos
Biodegradação Ambiental , Cirsium , Ouro , Iodetos , Mercúrio , Mineração , Mercúrio/metabolismo , Gana , Poluentes do Solo/metabolismo , Técnicas EletroquímicasRESUMO
Acid mine drainage ï¼AMDï¼ is of great concern owing to its safety hazards and environmental risks. However, little is known about the effects of AMD leakage on soil physicochemical properties and bacterial communities in ecologically fragile desert steppe soils, especially in the soil profile. Therefore, an AMD-contaminated profile and clean profile were used as research objects respectively to investigate the effects of AMD on soil physicochemical properties and bacterial community composition, structure, and interactions in soil layers at different depths of desert grassland and, based on this, to analyze the driving factors of bacterial community changes. The results showed that AMD significantly decreased the pH and increased electrical conductivity ï¼ECï¼ and heavy metal content in the upper ï¼0-40 cmï¼ soil layer of the profile. The AMD-contaminated profile bacteria were dominated by Proteobacteria, Firmicutes, and Actinobacterota, whereas clean profile bacteria were dominated by Firmicutes and Bacteroidota, with Thermithiobacillus and Alloprevotella being the biomarkers for the contaminated and clean profiles, respectively. AMD contamination significantly reduced bacterial diversity and significantly altered bacterial community structure in the upper soil layers of the profile. The results of redundancy analysis showed that soil physicochemical properties explained 57.21% of the variation in bacterial community changes, with EC, TP, TN, As, Zn, and Pb being the main drivers of bacterial community changes. Network analyses showed that AMD contamination increased profile complexity, modularity, and intra-community competition, thereby improving bacterial community stability and resilience. In conclusion, the study provided useful information on the effects of AMD pollution on soil physicochemical properties and bacterial communities in desert steppe soils, which may help to improve the understanding of the ecological hazards of AMD pollution on soils in extreme habitats.
Assuntos
Bactérias , Clima Desértico , Pradaria , Mineração , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Ácidos/análise , China , Monitoramento Ambiental , Metais Pesados/análiseRESUMO
This article seeks to evaluate the scientific landscape of the phytoremediation of mine tailings through a series of bibliometric and scientometric techniques. Phytoremediation has emerged as a sustainable approach to remediate metal-contaminated mine waste areas. A scientometric analysis of 913 publications indexed in Web of Science from 1999 to 2023 was conducted using CiteSpace. The results reveal an expanding, interdisciplinary field with environmental sciences as the core category. Keyword analysis of 561 nodes and 2,825 links shows a focus on plant-metal interactions, microbial partnerships, bioavailability, and field validation. Co-citation analysis of 1,032 nodes and 2,944 links identifies seminal works on native species, plant-microbe interactions, and amendments. Temporal mapping of 15 co-citation clusters indicates a progression from early risk assessments and native plant inquiries to integrated biological systems, economic feasibility, and sustainability considerations. Recent trends emphasize multidimensional factors influencing adoption, such as plant-soil-microbe interactions, organic amendments, and field-scale performance evaluation. The findings demonstrate an intensifying translation of phytoremediation from scientific novelty to engineering practice. This quantitative and qualitative analysis of research trends aids in understanding the development of phytoremediation for mine tailings. The results provide valuable insights for researchers and practitioners in this evolving field.
Assuntos
Bibliometria , Biodegradação Ambiental , Mineração , Poluentes do Solo/metabolismo , Plantas/metabolismoRESUMO
Tailings dams' disasters begin a stage of river water contamination with no endpoint at first sight. But when the river was formerly used for public water supply and the use was suspended as consequence of a dam break, a time window for safe suspension lift must be anticipated to help water managers. The purpose of this study was to seek for that moment in the case of Brumadinho dam disaster which occurred in 2019 and injected millions of cubic meters of iron- and manganese-rich tailings into the Paraopeba River, leading to the suspension of public water supply to Belo Horizonte metropolitan region with this resource, until now. To accomplish the proposed goal, an assemblage of artificial intelligence and socio-economic development models were used to anticipate precipitation, river discharge and metal concentrations (iron, manganese) until 2033. Then, the ratios of metal concentrations between impacted and non-impacted sites were determined and values representing extreme events of river discharge were selected for further assessment. A ratio ≈1 generally indicates a similarity between impacted and non-impacted areas or, put another way, a return of impacted areas to a pre-rupture condition. Moreover, when the ratio is estimated under the influence of peak flows, then a value of ≈1 indicates a return to pre-rupture conditions under the most unfavorable hydrologic regimes, thus a safe return. So, the extreme ratios were plotted against time and fitted to a straight line with intercept-x representing the requested safe time. The results pointed to 6.57 years after the accident, while using iron as contaminant indicator, or 8.71 years when manganese was considered. Despite of being a relatively low-risk timeframe, the suspension lift should be implemented in phases and monitored for precaution of potential sporadic contamination events, while dredging of the tailings from impacted areas should continue and be accelerated.
RESUMO
We evaluated the ecophysiological responses of two semiarid coniferous tree species, Pinus halepensis and Tetraclinis articulata, growing on a nutrient-poor metalliferous mine tailings substrate to organic amendments (biochar and/or organic municipal waste). The trees were grown in mesocosms under irrigated conditions for 20 months. Then, a comprehensive characterization of soil and plant parameters (including stable isotopes) was carried out. Treatments containing municipal waste showed better soil fertility indicators (approximately 2-fold higher organic carbon and total nitrogen concentrations) and higher plant biomass (up to 5-fold higher) than unamended and only biochar treatments. Trees in most of the treatments exhibited leaf N/P ratios <14 indicating severe N limitation of plant growth. Metal uptake was below phytotoxic levels across all the treatments. Leaf δ13C values correlated positively with δ18O across treatments for both species indicating increasing water use efficiency with tighter stomatal regulation of water flux, and with T. articulata exhibiting tighter stomatal control (higher δ18O values) than P. halepensis. Trees in treatments containing only biochar did not differ in ecophysiological performance from those in the unamended treatments. In contrast, leaf stable isotopes revealed sharply increased of time-integrated photosynthetic activity (favoured by higher leaf N concentrations) combined with lower time-integrated stomatal conductance in the treatments containing municipal waste, indicating greatly enhanced water use efficiency in better nourished plants. Trade-offs between water use efficiency and nutrient (N and P) use efficiency were evident across treatments, with higher leaf nutrient concentrations associated with higher water use efficiency, at the cost of a lower nutrient use efficiency. These trade-offs were not impaired by the high metal concentrations of the tailings substrate, indicating that ecophysiological adjustments in response to changes in plant nutrient status promoted by the addition of organic amendments are critical for the adaptability of native tree species employed in the phytostabilisation of mine tailings.
Assuntos
Mineração , Poluentes do Solo/metabolismo , Árvores , Nitrogênio/metabolismo , Traqueófitas/fisiologia , Solo/química , Água , Nutrientes/metabolismo , Carvão Vegetal/química , Folhas de Planta/fisiologiaRESUMO
In this study, native ureolytic bacteria were isolated from copper tailings soils to perform microbial-induced carbonate precipitation (MICP) tests and evaluate their potential for biocement formation and their contribution to reduce the dispersion of particulate matter into the environment from tailings containing potentially toxic elements. It was possible to isolate a total of 46 bacteria; among them only three showed ureolytic activity: Priestia megaterium T130-1, Paenibacillus sp. T130-13 and Staphylococcus sp. T130-14. Biocement cores were made by mixing tailings with the isolated bacteria in presence of urea, resulting similar to those obtained with Sporosarcina pasteurii and Bacillus subtilis used as positive control. Indeed, XRD analysis conducted on biocement showed the presence of microcline (B. subtilis 17%; P. megaterium 11. 9%), clinochlore (S. pasteurii, 6.9%) and magnesiumhornblende (Paenibacillus sp. 17.8%; P. megaterium 14.6%); all these compounds were not initially present in the tailings soils. Moreover the presence of calcite (control 0.828%; Paenibacillus sp. 5.4%) and hematite (control 0.989%; B. subtilis 6.4%) was also significant unlike the untreated control. The development of biofilms containing abundant amount of Ca, C, and O on microscopic soil particles was evidenced by means of FE-SEM-EDX and XRD. Wind tunnel tests were carried out to investigate the resistance of biocement samples, accounted for a mass loss five holds lower than the control, i.e., the rate of wind erosion in the control corresponded to 82 g/m2h while for the biocement treated with Paenibacillus sp. it corresponded to only 16.371 g/m2h. Finally, in compression tests, the biocement samples prepared with P. megaterium (28.578 psi) and Paenibacillus sp. (28.404 psi) showed values similar to those obtained with S. pasteurii (27.102 psi), but significantly higher if compared to the control (15.427 psi), thus improving the compression resistance capacity of the samples by 85.2% and 84.1% with respect to the control. According to the results obtained, the biocement samples generated with the native strains showed improvements in the mechanical properties of the soil supporting them as potential candidates in applications for the stabilization of mining liabilities in open environments using bioaugmentation strategies with native strains isolated from the same mine tailing.
RESUMO
The particle size distribution in tailings notably influences their physical properties and behavior. Despite this, our understanding of how the distribution of tailings particle sizes impacts in situ pollution and ecological remediation in in-situ environment remains limited. In this study, an iron tailings reservoir was sampled along a particle flow path to compare the pollution characteristic and microbial communities across regions with different particle sizes. The results revealed a gradual reduction in tailings particle size along the flow direction. The predominant mineral composition shifts from minerals such as albite and quartz to layered minerals. Total nitrogen, total organic carbon, and total metal concentrations increased, whereas the acid-generating potential decreased. The region with the finest tailings particle size exhibited the highest microbial diversity, featuring metal-resistant microorganisms such as KD4-96, Micrococcaceae, and Acidimicrobiia. Significant discrepancies were observed in tailings pollution and ecological risks across different particle sizes. Consequently, it is necessary to assess tailings reservoirs pollution in the early stages of remediation before determining appropriate remediation methods. These findings underscore that tailings particle distribution is a critical factor in shaping geochemical characteristics. The responsive nature of the microbial community further validated these outcomes and offered novel insights into the ecological remediation of tailings.
RESUMO
The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.
Assuntos
Bactérias , Cobre , Ferro , Mineração , Níquel , Enxofre , Enxofre/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cobre/metabolismo , Cobre/análise , Níquel/metabolismo , Ontário , Microbiota , RNA Ribossômico 16S/genética , Microbiologia do Solo , Biodegradação AmbientalRESUMO
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Assuntos
Atriplex , Ecossistema , Sementes , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Atriplex/fisiologia , Atriplex/efeitos dos fármacos , Adaptação Fisiológica , Poluentes do Solo/toxicidade , Germinação/efeitos dos fármacos , Metais/toxicidade , Metais/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismoRESUMO
With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.
Assuntos
Biodegradação Ambiental , Carbono , Solo , Vanádio , Carbono/metabolismo , Solo/química , Vanádio/metabolismo , Microbiologia do Solo , Millettia/metabolismo , Titânio/química , Mineração , Bactérias/metabolismo , Poluentes do Solo/metabolismoRESUMO
Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.
Assuntos
Biodegradação Ambiental , Metais , Mineração , Humanos , ReciclagemRESUMO
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Assuntos
Biodegradação Ambiental , Mineração , Poluentes do Solo , Poluentes do Solo/metabolismo , Plantas/metabolismo , Plantas/genética , Recuperação e Remediação Ambiental/métodos , Genômica , Microbiologia do Solo , Metagenômica/métodosRESUMO
Over 14 billion tons of mine tailings are produced throughout the world each year, and this type of waste is generally stored onsite indefinitely. Alkali activation is a promising strategy for the reuse of mine tailings to produce construction materials, converting this waste stream into a value-added product. One major problem with alkali-activated mine tailings is their low durability in water (i.e., low hydrolytic stability). In this article, the influence of a mixed sodium hydroxide/sodium silicate alkali activator on the compressive strength, hydrolytic stability, and microstructure of alkali-activated materials (AAMs) were systematically investigated. XRD, FTIR, NMR, and NAD were used to investigate microstructural changes, and a water immersion test was used to show improvements in hydrolytic stability. For gold mine tailings activated with pure sodium hydroxide, the compressive strength was 15 MPa and a seven-day water immersion test caused a strength loss of 70%. With an addition of 1 M sodium silicate in the activator, the AAMs achieved a compressive strength of over 30 MPa and strength loss of only 45%. This paper proposes a mechanism explaining why the strength and hydrolytic stability of AAMs are dependent on the dosage of soluble silicate. A high dosage of sodium silicate inhibits the depolymerization of the source material, which results in a sample with less amorphous aluminosilicate gel and, therefore, lower hydrolytic stability.
RESUMO
The environmental impact of off-grid mines in remote, cold climates is significantly intensified by their dependence on fossil fuels for power and heating. A promising solution lies in the potential to capture and permanently store carbon within mine tailings, thus allowing the mining industry to take a leading role in carbon removal initiatives and provide sustainable solutions. This study explores energy-optimal design scenarios for flue gas injection into mine waste to capture carbon. The approach involves installing perforated pipes within dry stack tailings. The established reduced-order model in this research serves as a novel tool for decision-making, aiding in the selection of an appropriate perforation scheme for the injection pipes embedded in the tailings. A cost analysis is also performed to assess the financial viability of the proposed concept under different operating parameters. Operational expenses, particularly energy costs, are found to be influenced by the permeability of the tailings. In instances of lower permeabilities, larger injection pipes are required. The findings indicate that achieving viable operating costs for sequestering one tonne of carbon dioxide hinges on amenable pipe sizing and engineering. Additionally, the study estimates that maintaining a reasonable level (around 1%) between the power being decarbonized and the power required for the carbon sequestration operation is crucial.