RESUMO
Chalcopyrite has evolved into a crucial source of copper pollution, and xanthates inevitably coexisted with chalcopyrite in mine environments. However, the effect of xanthate on chalcopyrite bio-dissolution has not been illustrated yet. To fill this knowledge gap, the effect of potassium amyl xanthate (KAX) on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans was investigated. The results revealed that KAX promoted chalcopyrite bio-dissolution, indicating more copper ions were released into the environment under these circumstances. KAX treatment groups displayed a lag period in ferrous ion oxidation, thereby providing a more favorable redox potential for chalcopyrite bio-dissolution. Bacterial adsorption experiments indicated the number of free cells increased with the addition of KAX, hence the Fe3+ regeneration was accelerated. Elemental composition analyses indicated the addition of KAX was conducive to reducing the formation of passivation substance (Sn2-/S0). Additionally, the reduced surface tension of solution in KAX treatment groups was beneficial for the oxidant diffusing into the pores and cracks of chalcopyrite. This study provided a better comprehension of the effect of xanthate on copper pollution caused by chalcopyrite bio-dissolution, as well as a step toward better guidance in preventing copper pollution at source.
RESUMO
Introduction: Thus far, the impact of kaolin mining activities on the surrounding native plants and rhizosphere microecology has not been fully understood. Methods: In this study, we used 16S rRNA high-throughput sequencing to examine the impact of kaolin mining on the rhizosphere bacterial communities and functions of three local plant species: Conyza bonariensis, Artemisia annua, and Dodonaea viscosa. Results: The results showed that kaolin mining significantly reduced the diversity of rhizosphere bacteria in these plants, as indicated by the Shannon, Simpson, Chao1, and observed species indices (p < 0.05). Kaolin mining had an impact on the recruitment of three rhizosphere bacteria native to the area: Actinoplanes, RB41, and Mycobacterium. These bacteria were found to be more abundant in the rhizosphere soil of three local plants than in bulk soil, yet the mining of kaolin caused a decrease in their abundance (p < 0.05). Interestingly, Ralstonia was enriched in the rhizosphere of these plants found in kaolin mining areas, suggesting its resilience to environmental stress. Furthermore, the three plants had different dominant rhizosphere bacterial populations in kaolin mining areas, such as Nocardioides, Pseudarthrobacter, and Sphingomonas, likely due to the unique microecology of the plant rhizosphere. Kaolin mining activities also caused a shift in the functional diversity of rhizosphere bacteria in the three local plants, with each plant displaying different functions to cope with kaolin mining-induced stress, such as increased abundance of the GlpM family and glucan-binding domain. Discussion: This study is the first to investigate the effects of kaolin mining on the rhizosphere microecology of local plants, thus contributing to the establishment of soil microecological health monitoring indicators to better control soil pollution in kaolin mining areas.
RESUMO
The energetic green transition is increasing the demand for lithium (Li) exploitation. However, the Li supply faces challenges like limited reserves and environmental concerns. This pioneer study aims to characterize the Li concentrations in the region around the Barroso mine, in Portugal, by collecting and analyzing samples of cabbage, potato, drinking and irrigation water and soil from two nearby sites, and performing a preliminary exposure and risk assessment of local populations. Li levels ranged between 20 and 589 µg/kg in cabbages (n = 23), 2.3-21 µg/kg in potatoes (n = 21), 1.1-5.9 µg/L in drinking water (n = 10), 1.1-15 µg/L in irrigation water (n = 23) and 35-121 mg/kg in soils (n = 23). Significant differences in Li content between sampling sites were observed only for cabbage samples. The risk assessment revealed that none of the participants exceeded the provisional reference dose (p-RfD) (2 µg/kg bw/day), with a hazard quotient (HQ) < 1, suggesting no health concerns for the population. It is expected that the studied area will be affected by the future expansion of the mine concession, thus this pioneer study is crucial for future research as it establishes a initial database for evaluating the potential impact of mining activity on the environment and the population's exposure to Li.
Assuntos
Lítio , Mineração , Lítio/análise , Portugal , Medição de Risco , Humanos , Brassica/química , Monitoramento Ambiental/métodos , Exposição Ambiental , Poluentes do Solo/análise , Solanum tuberosum/química , Adulto , Água Potável/química , Água Potável/análise , Masculino , Feminino , Poluentes Químicos da Água/análiseRESUMO
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium-titanium-magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, ß diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment.
Assuntos
Endófitos , Mineração , Raízes de Plantas , Titânio , Vanádio , Vanádio/farmacologia , Raízes de Plantas/microbiologia , Endófitos/genética , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , RNA Ribossômico 16S/genética , Microbiologia do Solo , BiodiversidadeRESUMO
The pervasive presence of methylsiloxanes (MSs), comprising linear and cyclic congeners, in the environment poses significant ecological risks, yet the understanding of their transport mechanisms and deposition patterns remains limited. This study analyzed the concentrations of 12 linear-MSs (L3-L14) and 7 cyclic-MSs (D3-D9) in 29 surface soil samples collected across varying altitudes (3726 to 4863 m) near the Jiama mining sector in Tibet, aiming to investigate the distribution and transport dynamics of MSs from the emission source. The distribution of total MS concentration (ranging from 50.1 to 593 ng/g) showed a remarkable correlation with proximity to the mining site, suggesting the emergent source of mining activities for the MSs in the remote environment of the Tibetan Plateau. Employing the innovative model of robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR), the analysis predicted that the mining operations contributing 57.1 % of the total soil MSs, would significantly surpass contributions from traffic emissions (14.7 %), residential activities (13.2 %), and the environmental factor of total organic matter content (14.9 %). The Boltzmann equation effectively modeled the distribution pattern of soil MSs, highlighting atmospheric transport and gravitational settling as key distribution mechanisms. However, linear-MSs exhibited longer transport distances than cyclic-MSs and were more profoundly affected by prevailing wind directions, suggesting their differential environmental behaviors and risks. Our study underscored that the mining sector possibly emerged as a significant source of Tibetan MSs, and provided insights into the transport and fate of MSs in remote, high-altitude environments. The findings emphasize the need for targeted pollution control strategies to mitigate the environmental footprint of mining activities in Tibet and similar regions.
RESUMO
This study aimed to assess water contamination and associated health risks for populations residing in the mining areas of Kambélé and Bétaré-Oya. Key parameters, including pH, EC, TDS, TSS, and concentrations of metallic elements (Cd, Cr, Fe, Pb and Mn), were measured using established water analysis techniques. The analysis included multivariate statistical assessments, calculation of metal pollution and water quality indices, and health risk determinations, including daily intake (DI) and hazard quotient (HQ). Findings indicate a diverse pH range (5.26 < pH < 8.72), low mineralization (33.22 < EC (µS/cm) < 179.64), and elevated TSS content (22.53 < TSS (in mg/l) < 271.51). Metallic elements were observed in the descending order of Fe > Mn > Pb > Cr > Cd. Water quality assessments using the Water Quality Index (WQI) categorized sites as displaying doubtful to very poor quality, notably Woupy (WQI = 719.14) in Kambélé and Mali (WQI = 794.24) in Bétaré-Oya, with Heavy metal Pollution Index (HPI) values exceeding 100. These outcomes highlight consistent chemical degradation of surface water, posing potential risks to local populations' health and well-being. The study emphasizes the critical need for proactive environmental protection measures in mining areas, recommending the adoption of healthy mining practices and effective site reclamation strategies. Furthermore, future studies should consider exposure duration's potential impact on residents' health problems in these areas. Overall, this study contributes significantly to understanding and addressing the intricate interplay between mining activities, water quality, and public health in the Cameroon countryside.
RESUMO
The mining industry suppresses vegetation, exposing large soil areas in its ordinary operation. Water pollution and turbidity are caused by the carrying of solids, mainly colloidal particles, to the watercourses due to the effect of rainfall events. Therefore, the discharge of those effluents will lead to failure with watercourse quality parameters. Thus, there is a need to treat drainages (rainwaters) from the mining industry. However, using common coagulants and flocculants can result in acute or chronic ecotoxicity for aquatic biota. In this scenario, this research aimed to evaluate using a natural coagulant, the biopolymer Chitosan, to remove turbidity from mining industry spoiled water through bio-coagulation. The ecotoxicity of the natural coagulant was compared to the commonly used coagulants. For this purpose, we used synthetic rainwater (SRW) from the dispersion of fine (colloidal) particles in natural waters. Materials (water and soil) were collected in the mining area's sumps (sedimentation basins). The turbidity of the produced SRW ranged from between 500 and 4000 NTU. Jar Tests using Chitosan (CTS), polyaluminum chloride (PAC®12), and Superfloc®N100 variable doses were carried out to compare the effects of the coagulating/flocculating agents on the SRW turbidity reduction. The obtained results demonstrated the efficiency of CHS on turbidity reduction. The results were encouraging for low turbidity samples (<1000 NTU), making it possible to meet the limit parameters recommended by the Brazilian legislation. In addition, it was possible to conclude both CHS and the effluents treated with this coagulant have lower toxicity to aquatic biota than the combination of PAC®12 and Superfloc®N100.
Assuntos
Quitosana , Purificação da Água , Purificação da Água/métodos , Floculação , Água , SoloRESUMO
The Hg released from coal mining activities can endanger soil ecosystems and pose a risk to human health. Understanding the accumulation characteristics of mercury (Hg) in coal mining soil is important for effectively controlling Hg emissions and developing measures for the prevention and control of Hg contamination. To identify the potential sources of Hg in soils, the Hg concentration and isotopic composition characteristics of raw coal and different topsoil types from the areas surrounding a coal mine were determined in this study. The results showed that Hg in coal mainly exists mainly in the form of inorganic Hg, and Hg has experienced Hg2+ photoreduction prior to incorporating into coal. In addition, the composition of Hg isotopes differed significantly among different topsoil types, and the δ202Hg value of the farmland soil exhibited large negative excursions compared to the coal mining soil. The ternary mixed model further revealed the presence of substantial differences in potential Hg sources among the two regions, with the coal mining soil being greatly disturbed by anthropogenic activity, and the relative contributions of Hg from raw coal, coal gangue, and background soil to coal mining soil being 33.42%, 34.4%, and 32.19%, respectively. However, Hg from raw coal, coal gangue and background soil contributed 17.04%, 21.46%, and 61.51% of the Hg in the farmland soil, indicating that the accumulation of Hg in farmland soil was derived primarily from the background soil. Our study demonstrated that secondary pollution in soil caused by immense accumulation of solid waste (gangue) by mining activities offers a significant challenge to ecological security. These findings provide new insights into controlling soil Hg in mining areas and further highlight the urgency of strict protective measures for contaminated sites.
Assuntos
Minas de Carvão , Mercúrio , Poluentes do Solo , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Mineração , Solo , Isótopos , Carvão Mineral/análise , Poluentes do Solo/análise , ChinaRESUMO
The Mar Menor lagoon combined high biological production and environmental quality, making it an important economic engine. However, the pressure of human activities put its ecological integrity at risk, the oldest environmental impact being mining activity recorded since Roman times, about 3500 years ago, reaching its maximum intensity in the 20th century, contributing heavy metals to the lagoon sediments for almost 30 centuries. This work reviews the spatiotemporal evolution of the main heavy metals in this coastal lagoon using data from 272 surface sediment samples obtained during the last 40 years and two deep cores covering the total history of the lagoon (c. 6500 yrs BP), so as their incidence in the lagoon trophic web. The observed patterns in sedimentation, sediment characteristics and heavy metal content respond to the complex interaction, sometimes synergistic and sometimes opposing, between climatic conditions, biological production and human activities, with mining being mainly responsible for Pb, Zn and Cd inputs and port activities for Cu. High Fe/Al, Ti/Al and Zr/Al ratios identify periods of mining activity, while periods of arid climatic conditions and deforestation that increase erosion processes in the drainage basin and silt concentration in the lagoon sediments are determined by high Zr/Rb and, to a lesser extent, Zr/Al and Si/Al ratios. After the cessation of direct discharges into the lagoon in the 1950s, the recent evolution of heavy metals concentration and its spatial redistribution would be determined by hydrographic and biogeochemical processes, solubility of different elements, and coastal works in harbours and on beaches. The bioconcentration factor decreases along the trophic levels of the food web, suggesting that the lagoon ecosystem provides an important service by retaining heavy metals in the sediment, largely preventing their bioavailability, but actions involving resuspension or changes in sediment conditions would pose a risk to organisms.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Espanha , Sedimentos Geológicos/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Cadeia AlimentarRESUMO
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated areas by potentially toxic elements. However, in soils affected by polymetallic contamination, including metals, metalloids, and rare earth elements (REEs), it is necessary to evaluate the behavior of these toxic elements in the soil-plant system, which will allow the selection of the most appropriate native plants with phytoremediation potential to be used in phytoremediation programs. This study was conducted to evaluate the level of contamination of 29 metal(loid)s and REEs in two natural soils and four native plant species (Salsola oppositifolia, Stipa tenacissima, Piptatherum miliaceum, and Artemisia herba-alba) growing in the vicinity of a Pb-(Ag)-Zn mine and asses their phytoextraction and phytostabilization potential. The results indicated that very high soil contamination was found for Zn, Fe, Al, Pb, Cd, As, Se, and Th, considerable to moderate contamination for Cu, Sb, Cs, Ge Ni, Cr, and Co, and low contamination for Rb, V, Sr, Zr, Sn, Y, Bi and U in the study area, dependent of sampling place. Available fraction of PTEs and REEs in comparison to total concentration showed a wide range from 0% for Sn to more than 10% for Pb, Cd, and Mn. Soil properties such as pH, electrical conductivity, and clay content affect the total, available, and water-soluble concentrations of different PTEs and REEs. The results obtained from plant analysis showed that the concentration of PTEs in shoots could be at a toxicity level (Zn, Pb, and Cr), lower than toxic but more than sufficient or natural concentration accepted in plants (Cd, Ni, and Cu) or at an acceptable level (e.g., V, As, Co, and Mn). Accumulation of PTEs and REEs in plants and the translocation from root to shoot varied between plant species and sampling soils. A. herba-alba is the least efficient plant in the phytoremediation process; P. miliaceum was a good candidate for phytostabilization of Pb, Cd, Cu, V, and As, and S. oppositifolia for phytoextraction of Zn, Cd, Mn, and Mo. All plant species except A. herba-alba could be potential candidates for phytostabilization of REEs, while none of the plant species has the potential to be used in the phytoextraction of REEs.
RESUMO
Distribution and sources of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the glacimarine sediments (35 sites) of Svalbard were investigated. PCBs (32 congeners), traditional PAHs (15 homologs), emerging PAHs (11 homologs), and alkylated PAHs (16 homologs) were widely distributed in the Svalbard sediments (ranges: below method detection limit to 20, 21 to 3600, 1.0 to 1400, and 31 to 15,000 ng g-1 dry weight, respectively). Compositional analysis indicated that PCBs mainly originated from combustion sources, with PAHs being strongly influenced by local sources. Positive matrix factorization analysis showed that PAHs were associated with vehicle and petroleum combustion, coal, and coal combustion. Coal-derived PAHs contributed significantly to the sediments of Van Mijenfjorden. Remnants of coal mining activity trapped in the permafrost appear to enter the coastal environments as ground ice melts. Consequently, PAHs are currently emerging as the most significant contributors to potential risks in the Svalbard ecosystems.
Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Svalbard , Ecossistema , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Carvão Mineral/análise , Poluentes Químicos da Água/análise , ChinaRESUMO
All habitats have noise, but anthropogenic sounds often differ from natural sounds in terms of frequency, duration and intensity, and therefore may disrupt animal vocal communication. This study aimed to investigate whether vocalizations emitted by black-tufted marmosets (Callithrix penicillata) were affected by the noise produced by mining activity. Through passive acoustic monitoring, we compared the noise levels and acoustic parameters of the contact calls of marmosets living in two study areas (with two sampling points within each area)-one near and one far from an opencast mine in Brazil. The near area had higher anthropogenic background noise levels and the marmosets showed greater calling activity compared to the far area. Calls in the near area had significantly lower minimum, maximum and peak frequencies and higher average power density and bandwidth than those in the far area. Our results indicate that the mining noise affected marmoset vocal communication and may be causing the animals to adjust their acoustic communication patterns to increase the efficiency of signal propagation. Given that vocalizations are an important part of social interactions in this species, concerns arise about the potential negative impact of mining noise on marmosets exposed to this human activity.
RESUMO
Natural sources and anthropogenic activities are responsible for the widespread presence of heavy metals in the environment in the volcanic and geothermal area of Mt. Amiata (Tuscany, Italy). This study evaluates the extent of the population exposure to metals and describes the major individual and environmental determinants. A human biomonitoring survey was carried out to determine the concentrations of arsenic (As), mercury (Hg), thallium (Tl), antimony (Sb), cadmium (Cd), nickel (Ni), chromium (Cr), cobalt (Co), vanadium (V), and manganese (Mn). The associations between socio-demographics, lifestyle, diet, environmental exposure, and metal concentrations were evaluated using multiple log-linear regression models, adjusted for urinary creatinine. A total of 2034 urine and blood samples were collected. Adjusted geometric averages were higher in women (except for blood Hg) and younger subjects (except for Tl and Cd). Smoking was associated with Cd, As, and V. Some dietary habits (rice, fish, and wine consumption) were associated with As, Hg, Co, and Ni. Amalgam dental fillings and contact lenses were associated with Hg levels, piercing with As, Co, and Ni. Among environmental determinants, urinary As levels were higher in subjects using the aqueduct water for drinking/cooking. The consumption of locally grown fruits and vegetables was associated with Hg, Tl, and Co. Exposure to geothermal plant emissions was associated only with Tl.
Assuntos
Arsênio , Mercúrio , Metais Pesados , Animais , Feminino , Humanos , Cádmio/análise , Metais Pesados/urina , Cromo/análise , Manganês/análise , Mercúrio/análise , Níquel/análise , Arsênio/análise , Tálio/análise , Cobalto , Monitoramento AmbientalRESUMO
Coal is the most extensively used fossil fuel in China. It is well documented that coal combustion detrimentally affected air quality, yet the contribution of coal mining activity to air pollution is still largely unknown. Homing pigeons have been applied to assess the occurrence of atmospheric pollutants within cities. Herein, we sampled homing pigeons from both urban and mining areas in a typical coal industry city (Datong, China) as biomonitors for assessing local air pollution. Target organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were frequently detected in lung, liver, and fat tissues of the pigeons. The pollutants were predominately accumulated in lung, validating that respiration was the main accumulation route for these compounds in homing pigeons. In addition, pathological damage examination in lung and liver tissues revealed that the exposure to atmospheric pollutants impaired pigeon health. While the concentrations of PCBs and OCPs were similar in pigeons from urban and mining areas, the concentrations of PAHs were higher in pigeons from urban area. In contrast, more elevated levels of PBDEs (particularly BDE-209) were found in the mining area, which was consistent with the greater pathological damages and particulate matter levels. Unlike coal combustion, coal mining activities did not increase atmospheric PAH exposure to homing pigeons, but intensified PBDE contamination along with increasing emission of particulate matters. Overall, homing pigeons are promising biomonitors for assessing the respiratory exposure and risk of atmospheric pollutants within cities.
Assuntos
Poluentes Atmosféricos , Minas de Carvão , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Animais , Cidades , Carvão Mineral/análise , Indústria do Carvão Mineral , Columbidae , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/toxicidade , Hidrocarbonetos Clorados/análise , Material Particulado/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
This study aimed to study the biogeochemical behaviour of sulfur and its potential impact on arsenic in farmland polluted by acid mine drainage (AMD). Soil samples were collected from paddy fields that were near arsenic-rich coal mines. Different geochemical analysis technologies, combined with the study of microbial populations, were used to analyse the enrichment and transformation characteristics of exogenous sulfur in the soil profile as well as their coupling effect with arsenic transformation. The results showed that sulfur, iron, and arsenic were obviously enriched in the soil, and sulfur easily migrated to deeper layers. The content of arsenic in contaminated soil was about 1.30-3.14 times higher compared to standard Chinese soil quality. Polluted soil had a higher content of bioavailable sulfur and adsorbed sulfur accounted for about 29% of the total sulfur. This promoted an increased microbial population abundance of Desulfosporosinus. The δ34S values of the polluted soil were lower than the background, ranging from -0.69 to 11.44, but were higher than the theoretical values. There was evidence of dissimilatory sulfur reduction and enrichment in 34S. A significant positive correlation was observed between the contents of adsorbed sulfur and total arsenic. The biogeochemical transformation of sulfur was conducive to the transformation of iron oxide-bound arsenic into sulfide minerals, which enhanced its stability. These results provide theoretical support for understanding the cycling transformation and environmental impact of sulfur in paddy fields polluted by AMD.
Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Mineração , Solo/química , Poluentes do Solo/análise , Enxofre/químicaRESUMO
Post-mining waste from Zn-Pb ore exploitation undergoes processes of spontaneous succession and changes in soil chemical composition. The Zakawie area was industrially transformed by historical mining activity, ore enrichment, and the metallurgical processing of Zn-Pb ore. The subject of the study was to analyse the rate of vegetation succession (from 1999 to 2019), soil chemistry, and the relationships between them in an anthropogenic habitat with high concentrations of potentially toxic metals. Ecological and geochemical studies were carried out in an area contaminated with waste from a disused Zn-Pb ore-washing plant. Between 1999 and 2019, the transformation of grassland and meadow vegetation into scrub and forest-grassland communities was observed. This transformation led to a decrease in the area of Molinietum caeruleae meadow (from 25.8% in 1999 to 10.7% in 2019), whose place was taken by Prunus spinosa and Rhamnus cathartica. The community of xerothermic limestone grasslands completely disappeared, being replaced in favour of the Diantho-Armerietum and Prunus spinosa community. In this period, the share of lifeforms of plants and species composition (46 and 60, respectively) also changed. The Shannon and Simpson biodiversity index reached high values in the second investigation period, and it was 0.893 and 0.86, respectively. The anthrosols had a high content of Zn-85,360 mg kg-1, Pb-28,300 mg kg-1, Cd-340 mg kg-1, and As-1200 mg kg-1. Carbonates, clay minerals, and fe-oxides are predominant in the mineral composition of the rhizosphere; the metal-bearing phases are stable; and hardly soluble minerals include smithsonite, cerussite, monheimite, hemimorphite, and oxides of Fe and Fe-Mn. Mineralisation/crust processes formed on the epidermis, and their influences on root development were found. Scanning electron microscopy and energy-dispersive X-ray spectroscopy studies on rhizosphere soil components provide information on the type of minerals and their susceptibility to heavy metals release. The identification of some biotic and mineral structures in rhizospheres can be an interesting source of information on pedogenic processes identified in back-scattered electron images.
RESUMO
Rare-earth mining has caused extensive damage to soil, vegetation, and water, significantly threatening ecosystems. Monitoring environmental disturbance caused by rare-earth mining is necessary to protect the ecological environment. A spatiotemporal remote sensing monitoring method for mining to reclamation processes in a rare-earth mining area using multisource time-series satellite images is described. In this study, the normalized difference vegetation index (NDVI) is used to evaluate the mining impact. Regression analysis is conducted to relate the HJ-1B CCD and Landsat 5/8 data to reduce the NDVI error related to sensor differences between different datasets. The analysis method of NDVI trajectory data of ground objects is proposed, and areas of environmental disturbance caused by rare-earth mining are identified. Pixel-based trajectories were used to reconstruct the temporal evolution of vegetation, and a temporal trajectory segmentation method is established based on the vegetation changes in different disturbance stages. The temporal trajectory of the rare-earth disturbance points is segmented to extract features in each stage to obtain the disturbance year, recovery year, and recovery cycle and evaluate the vegetation recovery after rare-earth mining disturbance. We applied the method to a stack of 20 multitemporal images from 2000 to 2019 to analyze vegetation disturbance due to rare-earth mining and vegetation recovery in the upper reaches of the Guangdong-Hong Kong-Macao Greater Bay Area, China. The results show the following. (1) Mining industry in the study area experienced rapid expansion before 2008, but growth slowed since the policies implemented by the government since 2009 to restrict rare-earth mining. (2) The continuous influence to the land caused by rare-earth mining can last for decades; however, the reclamation activities shorten the recovery cycle of mining land from 5 to 3 years.
Assuntos
Ecossistema , Metais Terras Raras , China , Monitoramento Ambiental , Mineração , SoloRESUMO
This study investigated the distribution, pollution level and potential ecological risk of potentially toxic elements (PTEs) from manganese mining in a karstic Danshui River, in Changyang, Western Hubei, Central China. River water and sediments were collected for seven PTEs measurement (As, Cd, Cr, Cu, Mn, Pb and Zn), as well as pH and Eh of the river water were measured. Results showed that the major pollutant was Mn, the river water environment was mainly acidic and oxidizing (288 < Eh, pH < 6.3), and the pollution distribution of Mn in the study area was dominated by the combination of natural processes and anthropogenic activities. In the river water, according to the contamination factor (CF) and pollution load index (IPL) results, Mn was considered the main pollutant. There was low As and Pb pollution downstream as well as Cu pollution upstream. Upstream and downstream areas were the main polluted river sections of the river water samples collected. In river sediments, based on the results of the geo-accumulation index (Igeo) and potential ecological risk index (IPER), it was determined that there was only considerable Mn pollution. The IPER of the PTEs from the river sediments was at acceptable levels, only Mn upstream performed at a moderate ecological risk level. According to Pearson correlation and principal component analysis, Mn originated from manganese mining activities, Cd, Cr and Zn were of natural origin, and Cu may have come from both mining and natural origin, whereas Pb and As were mainly related to the daily activities. Consequently, elemental speciation, mining activities and the distribution of water conservancy facilities were the main impacts of PET pollution distribution in this river.
Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Manganês/toxicidade , Metais Pesados/análise , Mineração , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Atmospheric deposition of cadmium (Cd) and lead (Pb) was investigated together with the accumulation, distribution and health risks from potentially toxic metals in soils, vegetables and human hair at a mining area in southwest China. Annual atmospheric deposition of Cd and Pb were 41.1 and 192 g ha- 1, respectively, and consisted mainly of dry deposition. Agricultural soils experienced high levels of metal pollution around the mine, with 66.4% and 57.3 % of vegetable samples grown on these polluted fields exceeding maximum permissible Cd and Pb concentrations, particularly the leafy vegetables. Residents living near the mining area had high Cd (0.75 mg kg- 1) and Pb (6.87 mg kg- 1) concentrations in their hair, and the maximum values occurred in occupationally exposed individuals. Long-term mining activities have resulted in high health risks to the local population due to Cd and Pb deposition and accumulation from the atmosphere, soils and vegetables.
Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Zinco/análiseRESUMO
In San Luis Potosí, Mexico, the exploitation of minerals has historically been carried out as an activity that has left in its path environmental liabilities, with high concentrations of heavy metals. These metals have undergone weathering by rain and wind and have moved closer to inhabited locations as is the case of Cerro de San Pedro (CSP) and Villa de la Paz (VDP). The objective of this study is to show the biological alteration of soils due to the presence of heavy metals and metalloids like Cadmium (Cd), Copper (Cu), Lead (Pb) and Arsenic (As) and to find the relationship between contamination and risk indexes. Soil samples were obtained from sites with historical records of mining activity and their surroundings. Several analyses were performed, such as pH levels, organic matter, electrical conductivity, clays, heavy metals and As. Moreover, Community Level Physiological profiling (CLPP) were conducted. The obtained evidence showed high levels of contamination by As and heavy metals in both sites (CSP: 6485.1 mg/Kg of Pb and pH of 4.4; VDP: 7188.2 mg/Kg of As and pH of 7.8). According to the Metal Pollution Index (MPI), 607.0 in CSP and 1050.5 in VDP, presented a high environmental risk, apart from, risk to human health (SQGQI) 35.8 in CSP and 131.5 in VDP. At the same time, CLPPs showed that microbiological communities were selective in taking up substrate groups, in the following order: Carbohydrates > Polymers > Carboxylic acids > Amino acids > Amines/Amides. However, a positive correlation in CSP was only found between both indexes and Amines/Amides (r = 0.46, p < 0.05), and in VDP the D-Galactonic acid-γ-Lactone with the MPI (r = 0.49, p < 0.05), and with the SQGQI (r = 0.45, p < 0.05). Although this behavior was not homogeneous, it was possible to find negative correlations between both indexes and the AWCD with other substrates, influenced by the physicochemical characteristics presented in each studied site. Consequently, according to our findings, a combined effect between the physicochemical characteristics, As, and heavy metals took place, on the metabolic activity, causing alterations to soil functions.