Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
EMBO J ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103491

RESUMO

Mitochondrial DNA (mtDNA) is present in multiple copies within cells and is required for mitochondrial ATP generation. Even within individual cells, mtDNA copies can differ in their sequence, a state known as heteroplasmy. The principles underlying dynamic changes in the degree of heteroplasmy remain incompletely understood, due to the inability to monitor this phenomenon in real time. Here, we employ mtDNA-based fluorescent markers, microfluidics, and automated cell tracking, to follow mtDNA variants in live heteroplasmic yeast populations at the single-cell level. This approach, in combination with direct mtDNA tracking and data-driven mathematical modeling reveals asymmetric partitioning of mtDNA copies during cell division, as well as limited mitochondrial fusion and fission frequencies, as critical driving forces for mtDNA variant segregation. Given that our approach also facilitates assessment of segregation between intact and mutant mtDNA, we anticipate that it will be instrumental in elucidating the mechanisms underlying the purifying selection of mtDNA.

2.
Int Immunopharmacol ; 140: 112840, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106713

RESUMO

Sepsis-associated encephalopathy (SAE) is a severe complication of sepsis, characterized by neuroinflammation, mitochondrial dysfunction, and oxidative stress, leading to cognitive decline and high mortality. The effectiveness of dichloroacetate (DCA) in modulating mitochondrial function provides a novel therapeutic strategy for SAE. In this study, we evaluated the neuroprotective effects of DCA in a rat model of SAE induced by cecal ligation and puncture (CLP). Rats treated with DCA exhibited significant improvements in neurological function and survival, as evidenced by less neuron loss from histopathologic analysis, restored neurologic deficit scores, improved Y-maze alternation percentages, and enhanced recognition index performance. Biochemical analyses showed that DCA administration at 25 mg/kg and 100 mg/kg reduced astrocyte and microglial activation, indicating reduced neuroinflammation. Furthermore, DCA simultaneously reduced the production of circulating and cerebral inflammatory cytokines (including TNF-α, IL-1ß, and IL-10), concomitant with mitigating oxidative stress through down-regulating expression of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) in the brain. Mechanistically, DCA modulated mitochondrial dynamics by suppressing Drp1 and pDrp1 expression, which are indicators of mitochondrial fission. This was corroborated by transmission electron microscopy, quantification of mitochondrial area, and Western blot analyses. Furthermore, DCA treatment improved ATP levels, mitochondrial complex I activity, and NAD+/NADH ratio, indicating a significant attenuation of brain mitochondrial dysfunction. In conclusion, our findings suggest that DCA confers neuroprotection in SAE by curtailing neuroinflammation and mitochondrial fission, outlining a promising therapeutic strategy for treating SAE in critically ill patients.

3.
Metabolism ; 159: 155982, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089491

RESUMO

BACKGROUND: Receptor-interacting protein kinase (RIPK)3 is an essential molecule for necroptosis and its role in kidney fibrosis has been investigated using various kidney injury models. However, the relevance and the underlying mechanisms of RIPK3 to podocyte injury in albuminuric diabetic kidney disease (DKD) remain unclear. Here, we investigated the role of RIPK3 in glomerular injury of DKD. METHODS: We analyzed RIPK3 expression levels in the kidneys of patients with biopsy-proven DKD and animal models of DKD. Additionally, to confirm the clinical significance of circulating RIPK3, RIPK3 was measured by ELISA in plasma obtained from a prospective observational cohort of patients with type 2 diabetes, and estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), which are indicators of renal function, were followed up during the observation period. To investigate the role of RIPK3 in glomerular damage in DKD, we induced a DKD model using a high-fat diet in Ripk3 knockout and wild-type mice. To assess whether mitochondrial dysfunction and albuminuria in DKD take a Ripk3-dependent pathway, we used single-cell RNA sequencing of kidney cortex and immortalized podocytes treated with high glucose or overexpressing RIPK3. RESULTS: RIPK3 expression was increased in podocytes of diabetic glomeruli with increased albuminuria and decreased podocyte numbers. Plasma RIPK3 levels were significantly elevated in albuminuric diabetic patients than in non-diabetic controls (p = 0.002) and non-albuminuric diabetic patients (p = 0.046). The participants in the highest tertile of plasma RIPK3 had a higher incidence of renal progression (hazard ratio [HR] 2.29 [1.05-4.98]) and incident chronic kidney disease (HR 4.08 [1.10-15.13]). Ripk3 knockout improved albuminuria, podocyte loss, and renal ultrastructure in DKD mice. Increased mitochondrial fragmentation, upregulated mitochondrial fission-related proteins such as phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (Drp1), and mitochondrial ROS were decreased in podocytes of Ripk3 knockout DKD mice. In cultured podocytes, RIPK3 inhibition attenuated mitochondrial fission and mitochondrial dysfunction by decreasing p-mixed lineage kinase domain-like protein (MLKL), PGAM5, and p-Drp1 S616 and mitochondrial translocation of Drp1. CONCLUSIONS: The study demonstrates that RIPK3 reflects deterioration of renal function of DKD. In addition, RIPK3 induces diabetic podocytopathy by regulating mitochondrial fission via PGAM5-Drp1 signaling through MLKL. Inhibition of RIPK3 might be a promising therapeutic option for treating DKD.

4.
Biochem Pharmacol ; 229: 116477, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128586

RESUMO

Renal fibrosis serves as the shared pathway in chronic kidney disease (CKD) progression towards end-stage renal disease (ESRD). Endothelial-mesenchymal transition (EndMT) is a vital mechanism leading to the generation of myofibroblasts, thereby contributing to the advancement of fibrogenesis. Baculoviral IAP Repeat Containing 3(Birc3) was identified as a crucial inhibitor of cell death and a significant mediator in inflammatory signaling and immunity. However, its involvement in the development of renal interstitial fibrosis via EndMT still needs to be clarified. Herein, elevated levels of Birc3 expression along with EndMT-associated alterations, including increased α-smooth muscle actin (α-SMA) levels and decreased CD31 expression, were observed in fibrotic kidneys of Unilateral Ureteral Obstruction (UUO)-induced mouse models and transforming growth factor-ß (TGF-ß)-induced EndMT in Human Umbilical Vein Endothelial Cells (HUVECs). Functionally, Birc3 knockdown inhibited EndMT and mitochondrial fission mediated by dynamin-related protein 1 (Drp1) both in vivo and in vitro. Mechanistically, endothelial Birc3 exacerbated Drp-1-induced mitochondrial fission through the MAPK/PI3K/Akt signaling pathway in endothelial cell models stimulated TGF-ß. Collectively, these findings illuminate the mechanisms and indicate that targeting Birc3 could offer a promising therapeutic strategy to improve endothelial cell survival and mitigate the progression of CKD.

5.
Int Immunopharmacol ; 140: 112831, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111149

RESUMO

Chronic hepatitis B virus (HBV) infection continues to be a prominent cause of liver fibrosis and end-stage liver disease in China, necessitating the development of effective therapeutic strategies. This study investigated the potential of targeting TGR5 to alleviate liver fibrosis by impeding the activation of hepatic stellate cells (HSCs), which play a pivotal role in fibrotic progression. Using the human hepatic stellate cell line LX-2 overexpressing hepatitis B virus X protein (HBX), this study revealed that TGR5 activation through INT-777 inhibits HBX-induced LX-2 cell activation, thereby ameliorating liver fibrosis, which is associated with the attenuation of mitochondrial fission and introduces a novel regulatory pathway in liver fibrosis. Additional experiments with mitochondrial fission inducers and inhibitors confirm the crucial role of mitochondrial dynamics in TGR5-mediated effects. In vivo studies using TGR5 knockout mice substantiate these findings, demonstrating exacerbated fibrosis in the absence of TGR5 and its alleviation with the mitochondrial fission inhibitor Mdivi-1. Overall, this study provides insights into TGR5-mediated regulation of liver fibrosis through the modulation of mitochondrial fission in HSCs, suggesting potential therapeutic strategies for liver fibrosis intervention.

6.
Clin Transl Med ; 14(8): e1791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113233

RESUMO

BACKGROUND: Mutations in several translation initiation factors are closely associated with premature ovarian insufficiency (POI), but the underlying pathogenesis remains largely unknown. METHODS AND RESULTS: We generated eukaryotic translation initiation factor 5 (Eif5) conditional knockout mice aiming to investigate the function of eIF5 during oocyte growth and follicle development. Here, we demonstrated that Eif5 deletion in mouse primordial and growing oocytes both resulted in the apoptosis of oocytes within the early-growing follicles. Further studies revealed that Eif5 deletion in oocytes downregulated the levels of mitochondrial fission-related proteins (p-DRP1, FIS1, MFF and MTFR) and upregulated the levels of the integrated stress response-related proteins (AARS1, SHMT2 and SLC7A1) and genes (Atf4, Ddit3 and Fgf21). Consistent with this, Eif5 deletion in oocytes resulted in mitochondrial dysfunction characterized by elongated form, aggregated distribution beneath the oocyte membrane, decreased adenosine triphosphate content and mtDNA copy numbers, and excessive accumulation of reactive oxygen species (ROS) and mitochondrial superoxide. Meanwhile, Eif5 deletion in oocytes led to a significant increase in the levels of DNA damage response proteins (γH2AX, p-CHK2 and p-p53) and proapoptotic proteins (PUMA and BAX), as well as a significant decrease in the levels of anti-apoptotic protein BCL-xL. CONCLUSION: These findings indicate that Eif5 deletion in mouse oocytes results in the apoptosis of oocytes within the early-growing follicles via mitochondrial fission defects, excessive ROS accumulation and DNA damage. This study provides new insights into pathogenesis, genetic diagnosis and potential therapeutic targets for POI. KEY POINTS: Eif5 deletion in oocytes leads to arrest in oocyte growth and follicle development. Eif5 deletion in oocytes impairs the translation of mitochondrial fission-related proteins, followed by mitochondrial dysfunction. Depletion of Eif5 causes oocyte apoptosis via ROS accumulation and DNA damage response pathway.


Assuntos
Apoptose , Dano ao DNA , Camundongos Knockout , Oócitos , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Oócitos/metabolismo , Dano ao DNA/genética , Feminino , Apoptose/genética , Dinâmica Mitocondrial/genética , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento
7.
J Cell Physiol ; : e31370, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988059

RESUMO

Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.

8.
Acta Pharmacol Sin ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009651

RESUMO

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

9.
Aging Cell ; : e14262, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953684

RESUMO

The dynamicity of the mitochondrial network is crucial for meeting the ever-changing metabolic and energy needs of the cell. Mitochondrial fission promotes the degradation and distribution of mitochondria, while mitochondrial fusion maintains mitochondrial function through the complementation of mitochondrial components. Previously, we have reported that mitochondrial networks are tubular, interconnected, and well-organized in young, healthy C. elegans, but become fragmented and disorganized with advancing age and in models of age-associated neurodegenerative disease. In this work, we examine the effects of increasing mitochondrial fission or mitochondrial fusion capacity by ubiquitously overexpressing the mitochondrial fission gene drp-1 or the mitochondrial fusion genes fzo-1 and eat-3, individually or in combination. We then measured mitochondrial function, mitochondrial network morphology, physiologic rates, stress resistance, and lifespan. Surprisingly, we found that overexpression of either mitochondrial fission or fusion machinery both resulted in an increase in mitochondrial fragmentation. Similarly, both mitochondrial fission and mitochondrial fusion overexpression strains have extended lifespans and increased stress resistance, which in the case of the mitochondrial fusion overexpression strains appears to be at least partially due to the upregulation of multiple pathways of cellular resilience in these strains. Overall, our work demonstrates that increasing the expression of mitochondrial fission or fusion genes extends lifespan and improves biological resilience without promoting the maintenance of a youthful mitochondrial network morphology. This work highlights the importance of the mitochondria for both resilience and longevity.

10.
Heliyon ; 10(12): e33132, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022094

RESUMO

Background: Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods: Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results: We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion: These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.

11.
Exp Neurol ; 380: 114899, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059737

RESUMO

Various health issues have emerged due to consuming high-fat diets (HFD), particularly the detrimental impact they have on mitochondrial dynamics and subsequet cognition functions. Specially, mitochondrial fission can serve as an upstream signal in the regulation of cortical inflammation and neural pyroptosis. Our study was designed to verify the existence of neuroinflammation in the pathogenesis of HFD-induced cognitive dysfunction and demonstrated that resveratrol (RSV) attenuated neural deficits via regulation of cortical mitochondrial fission. A total of 50 male Sprague Dawley rats were randomly divided into five groups: control (Cont, 26 weeks on normal rodent diet); high-fat diet (HFD); dietary adjustments (HFD + ND); resveratrol intervention (HFD + R); joint intervention (HFD + ND + R) for 26 weeks. The spatial learning and memory function, spine density, NLRP3 inflammasome associated protein, mRNA and protein expression involved in mitochondrial dynamics and SIRT1/PGC-1α signaling pathway in brain were measured. Furthermore, reactive oxygen species (ROS) accumulation and resultant mitochondrial membrane potential (MMP) alteration in PC12 cells exposed to palmitic acid (PA) or Drp1 inhibitor (Mdivi-1) were detected to reflect mitochondrial function. The findings suggested that prolonged treatment of RSV improved cognitive deficits and neuronal damage induced by HFD, potentially attributed to activation of the SIRT1/PGC-1α axis. We further indicated that the activation of the NLRP3 inflammasome in PA (200 µM) treated PC12 cells could be inhibited by Mdivi-1. More importantly, Mdivi-1 (10 µM) reduced intracellular ROS levels and enhanced MMP by reversing Drp1-mediated aberrant mitochondrial fission. To summarize, those results clearly indicated that a HFD inhibited the SIRT1/PGC-1α pathway, which contributed to an imbalance in mitochondrial dynamics and the onset of NLRP3-mediated pyroptosis. This effect was mitigated by the RSV possibly through triggering the SIRT1/PGC-1α axis, prevented aberrant mitochondrial fission and thus inhibited the activation of the NLRP3 inflammatory pathway.

12.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039796

RESUMO

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Assuntos
Citocinas , Proteínas do Citoesqueleto , Dermatite Atópica , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial , Triterpenos Pentacíclicos , Triterpenos , Animais , Dinâmica Mitocondrial/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dermatite Atópica/metabolismo , Humanos , Triterpenos/farmacologia , Camundongos , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Linfopoietina do Estroma do Timo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células HaCaT , Fosforilação/efeitos dos fármacos
13.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063023

RESUMO

Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.


Assuntos
Cardiomiopatias , Dinaminas , Mutação , Humanos , Feminino , Dinaminas/genética , Cardiomiopatias/genética , Mutação/genética , Lactente , Evolução Fatal , Encefalopatias/genética , Encefalopatias/patologia , GTP Fosfo-Hidrolases/genética
14.
Mol Cell ; 84(14): 2732-2746.e5, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38981483

RESUMO

Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.


Assuntos
Dinaminas , Metabolismo Energético , Hexoquinase , Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Hexoquinase/metabolismo , Hexoquinase/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/enzimologia , Dinaminas/metabolismo , Dinaminas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Animais , Trifosfato de Adenosina/metabolismo , Estresse Fisiológico , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ciclo do Ácido Cítrico , Glucose-6-Fosfato/metabolismo , Camundongos , Células HeLa , Células HEK293 , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Mutação
15.
Zebrafish ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007173

RESUMO

Global warming and extreme weather events pose a significant threat to global biodiversity, with rising water temperatures exerting a profound influence on fish conservation and fishery development. In this study, we used zebrafish as a model organism to explore the impact of a heat acclimation period on their survival rates. The results demonstrated that a 2-month heat acclimation period almost completely mitigated heat stress-induced mortality in zebrafish. Subsequent analysis of the surviving zebrafish revealed a predominance of hepatic mitochondria in a fission state. Remarkably, a short-term fasting regimen, which induced hepatic mitochondrial fission, mirrored the outcomes of the protective effect of heat acclimation and augmented animal survival under heat stress. Conversely, treatment with a mitochondrial fission inhibitor within the fasting group attenuated the elevated survival rate. Furthermore, zebrafish embryos subjected to brief heat acclimation also exhibited increased heat resistance, a trait diminished by a chemical intervention inhibiting mitochondrial fission. This suggests a shared mechanism for heat resistance between embryos and adult zebrafish. These findings underscore the potential use of inducing mitochondrial fission to enhance heat resistance in zebrafish, offering promise for fish biodiversity conservation in the face of global warming.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39077914

RESUMO

Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.

17.
Geroscience ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028454

RESUMO

The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.

18.
J Ethnopharmacol ; 334: 118572, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39025164

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Recently, podocyte mitochondrial dysfunction and necroptosis have been shown to play critical roles in renal fibrosis (RF) in diabetic kidney disease (DKD); however, these conditions lack effective treatment. In China, the supplemented Gegen Qinlian Decoction Formula (SGQDF), which originates from the classical prescription Gegen Qinlian Decoction, has been widely used to treat patients with DKD. However, it remains unclear whether SGQDF alleviates podocyte injury-associated RF in patients with DKD. AIM OF STUDY: This study aimed to clarify the therapeutic effects of SGQDF compared with those of empagliflozin (EMPA) on podocyte mitochondrial fission and RF in DKD and its necroptosis-related mechanisms. MATERIALS AND METHODS: Modified DKD rat models were developed through a combination of uninephrectomy, streptozotocin administration through intraperitoneal injection, and exposure to a high-fat diet. Following RF formation, the DKD rat models received either a high dose of SGQDF (H-SGQDF), a low dose of SGQDF (L-SGQDF), EMPA, or vehicle for 4 weeks. In our in vitro study, we subjected cultured murine podocytes to a high-glucose environment and various treatments including Mdivi-1, adalimumab, and necrostatin-1, with or without H-SGQDF or EMPA. SGQDF target prediction and molecular docking verification were performed. For the in vivo study, we focused on examining changes in the parameters associated with renal injury, RF, and oxidative stress (OS)-induced injuries in podocytes. Both in vivo and in vitro studies included an analysis of changes in podocyte mitochondrial fission, TNF-α-induced podocyte necroptosis, and the RIPK1/RIPK3/MLKL signaling pathway activation. RESULTS: SGQDF improved renal injury markers, including body weight, blood glucose, serum creatinine, blood urea nitrogen, and urinary albumin, in a dose-dependent manner. The beneficial effects of H-SGQDF in vivo were greater than those of L-SGQDF alone in vivo. Interestingly, similar to EMPA, H-SGQDF ameliorated RF and reduced OS-induced podocyte injury in diabetic kidneys. Furthermore, TNF-α signaling was shown to be important in the network construction of "the SGQDF-component-target." Based on this, we also showed that the beneficial effects in vivo and in vitro of H-SGQDF were closely related to the improvement in mitochondrial dysfunction and the inhibition of TNF-α-induced necroptosis in podocytes. CONCLUSION: In the present study, we showed that H-SGQDF, similar to EMPA, attenuates podocyte mitochondrial fission and RF, and that the underlying therapeutic mechanisms are closely related to inhibiting the activation of the RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. Our findings provide new pharmacological evidence for the application of H-SGQDF in the RF treatment of DKD.


Assuntos
Compostos Benzidrílicos , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Fibrose , Glucosídeos , Dinâmica Mitocondrial , Necroptose , Podócitos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Animais , Glucosídeos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Compostos Benzidrílicos/farmacologia , Masculino , Podócitos/efeitos dos fármacos , Podócitos/patologia , Necroptose/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fibrose/tratamento farmacológico , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo
19.
Eur J Pharmacol ; 977: 176736, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878877

RESUMO

Mitochondrial dysfunction and the activation of multiple programmed cell death (PCD) have been shown to aggravate the severity and mortality associated with the progression of myocardial infarction (MI). Although pharmacological modulation of mitochondrial dynamics, including treatment with the fusion promoter (M1) and the fission inhibitor (Mdivi-1), exerted cardioprotection against several cardiac complications, their roles in the post-MI model have never been investigated. Using a MI rat model instigated by permanent left-anterior descending (LAD) coronary artery occlusion, post-MI rats were randomly assigned to receive one of 4 treatments (n = 10/group): vehicle (DMSO 3%V/V), enalapril (10 mg/kg), Mdivi-1 (1.2 mg/kg) and M1 (2 mg/kg), while a control group of sham operated rats underwent surgery without LAD occlusion (n = 10). After 32-day treatment, cardiac and mitochondrial function, and histopathological morphology were investigated and molecular analysis was performed. Treatment with enalapril, Mdivi-1, and M1 significantly mitigated cardiac pathological remodeling, reduced myocardial injury, and improved left ventricular (LV) function in post-MI rats. Importantly, all interventions also attenuated mitochondrial dynamic imbalance and mitigated activation of apoptosis, necroptosis, and pyroptosis after MI. This investigation demonstrated for the first time that chronic mitochondrial dynamic-targeted therapy mitigated mitochondrial dysfunction and activation of PCD, leading to improved LV function in post-MI rats.


Assuntos
Apoptose , Enalapril , Dinâmica Mitocondrial , Infarto do Miocárdio , Disfunção Ventricular Esquerda , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Dinâmica Mitocondrial/efeitos dos fármacos , Masculino , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Ratos , Enalapril/farmacologia , Enalapril/uso terapêutico , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Modelos Animais de Doenças , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia
20.
Neurobiol Dis ; 198: 106561, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857809

RESUMO

Neuroinflammation and mitochondrial dysfunction are closely intertwined with the pathophysiology of neurological disorders. Recent studies have elucidated profound alterations in mitochondrial dynamics across a spectrum of neurological disorders. Dynamin-related protein 1 (DRP1) emerges as a pivotal regulator of mitochondrial fission, with its dysregulation disrupting mitochondrial homeostasis and fueling neuroinflammation, thereby exacerbating disease severity. In addition to its role in mitochondrial dynamics, DRP1 plays a crucial role in modulating inflammation-related pathways. This review synthesizes important functions of DRP1 in the central nervous system (CNS) and the impact of epigenetic modification on the progression of neurodegenerative diseases. The intricate interplay between neuroinflammation and DRP1 in microglia and astrocytes, central contributors to neuroinflammation, is expounded upon. Furthermore, the use of DRP1 inhibitors to influence the activation of microglia and astrocytes, as well as their involvement in processes such as mitophagy, mitochondrial oxidative stress, and calcium ion transport in CNS-mediated neuroinflammation, is scrutinized. The modulation of microglia to astrocyte crosstalk by DRP1 and its role in inflammatory neurodegeneration is also highlighted. Overall, targeting DRP1 presents a promising avenue for ameliorating neuroinflammation and enhancing the therapeutic management of neurological disorders.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Dinaminas/metabolismo , Humanos , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Doenças Neuroinflamatórias/metabolismo , Inflamação/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA