Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Toxics ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058133

RESUMO

Environmental chemicals, such as PFAS, exist as mixtures and are frequently encountered at varying concentrations, which can lead to serious health effects, such as cancer. Therefore, understanding the dose-dependent toxicity of chemical mixtures is essential for health risk assessment. However, comprehensive methods to assess toxicity and identify the mechanisms of these harmful mixtures are currently absent. In this study, the dose-dependent toxicity assessments of chemical mixtures are performed in three methodologically distinct phases. In the first phase, we evaluated our machine-learning method (AI-HNN) and pathophysiology method (CPTM) for predicting toxicity. In the second phase, we integrated AI-HNN and CPTM to establish a comprehensive new approach method (NAM) framework called AI-CPTM that is targeted at refining prediction accuracy and providing a comprehensive understanding of toxicity mechanisms. The third phase involved experimental validations of the AI-CPTM predictions. Initially, we developed binary, multiclass classification, and regression models to predict binary, categorical toxicity, and toxic potencies using nearly a thousand experimental mixtures. This empirical dataset was expanded with assumption-based virtual mixtures, compensating for the lack of experimental data and broadening the scope of the dataset. For comparison, we also developed machine-learning models based on RF, Bagging, AdaBoost, SVR, GB, KR, DT, KN, and Consensus methods. The AI-HNN achieved overall accuracies of over 80%, with the AUC exceeding 90%. In the final phase, we demonstrated the superior performance and predictive capability of AI-CPTM, including for PFAS mixtures and their interaction effects, through rigorous literature and statistical validations, along with experimental dose-response zebrafish-embryo toxicity assays. Overall, the AI-CPTM approach significantly improves upon the limitations of standalone AI models, showing extensive enhancements in identifying toxic chemicals and mixtures and their mechanisms. This study is the first to develop a hybrid NAM that integrates AI with a pathophysiology method to comprehensively predict chemical-mixture toxicity, carcinogenicity, and mechanisms.

2.
NanoImpact ; 30: 100456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841353

RESUMO

Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30-40%). At the biochemical level, increased glutathione S-transferases (55-122%) and cholinesterase (182-343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination - NPLs + DPH (even at concentrations as low as 10 µg/L of DPH) - were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.


Assuntos
Difenidramina , Peixe-Zebra , Animais , Difenidramina/toxicidade , Microplásticos/toxicidade , Antagonistas dos Receptores Histamínicos , Preparações Farmacêuticas
3.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226060

RESUMO

Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Células Receptoras Sensoriais , Olfato/fisiologia
4.
J Hazard Mater ; 407: 124863, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33373965

RESUMO

Humans are exposed to complex mixtures of per- and polyfluoroalkyl substances (PFAS). However, human health risk assessment of PFAS currently relies on animal toxicity data derived from individual substance exposure, which may not adequately predict the risk from combined exposure due to possible interactions that can influence the overall risk. Long-chain perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are recognised as global emerging contaminants of concern due to their ubiquitous distribution in all environmental media, wildlife, and humans, persistency, bioaccumulative-, toxic-, and human health-risk potentials. This article reviews the current understanding of the human health risks associated with PFAS exposure focusing on more recent toxicological and epidemiological studies from 2010 to 2020. The existing information on PFAA mixtures was also reviewed in an attempt to highlight the need for greater focus on their potential interactions as mixtures within the class of these chemicals. A growing number of toxicological studies have indicated several adverse health outcomes of PFAA exposure, including developmental and reproductive toxicity, neurotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, thyroid disruption, and carcinogenicity. Epidemiological findings further support some of these adverse human health outcomes. However, the mechanisms underlying these adverse effects are not well defined. A few in vitro studies focusing on PFAA mixtures revealed that these compounds may act additively or interact synergistically/antagonistically depending on the species, dose level, dose ratio, and mixture components. Hence, the combined effects or potential interactions of PFAS mixtures should be considered and integrated into toxicity assessment to obtain a realistic and more refined human health risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Síndromes Neurotóxicas , Animais , Bioacumulação , Fluorocarbonos/toxicidade , Humanos , Reprodução , Glândula Tireoide
5.
Ecol Evol ; 10(15): 8018-8029, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788958

RESUMO

Evaluating how decomposition rates and litter nutrient release of different litter types respond to changes in water conditions is crucial for understanding global carbon and nutrient cycling. However, it is unclear how decreasing water affects litter mixture interactions for the maize-poplar system in arid regions. Here, the responses of the litter decomposition process and litter mixture interactions in the agroforestry system to changes in water conditions (control, light drought, and moderate drought) were tested. Moderate drought significantly decreased the decomposition rate for poplar leaf and mixed litters, and decomposition rate was significantly reduced for maize straw litter in light and moderate drought stress. The mass loss rates of maize straw and mixed litters were significantly higher than that of the poplar leaf litter under drought conditions, but there was no significant difference among the three litter types in the control. There was no interaction between mass loss of the mixed litter in the control and light drought conditions, and the litter mixture interaction showed nonadditive synergistic interactions under moderate drought. In terms of nutrient release, there was also no interaction between litter mixture with nitrogen and carbon, but there was antagonistic interaction with potassium release under the light drought condition. Our results demonstrate that drought conditions can lead to decreasing decomposition rate and strong changes in the litter mixture interactions from additive effects to nonadditive synergistic effects in moderate drought. Moreover, light drought changed the mixture interaction from an additive effect to an antagonistic interaction for potassium release.

6.
Environ Pollut ; 263(Pt B): 114182, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32247900

RESUMO

The combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances (PFAS) mixtures remain largely unknown even though they occur as complex mixtures in the environment. This study investigated the toxicity of individual and combined PFAS to human liver cell line (HepG2). The Combination Index (CI)-isobologram equation method was used to determine the toxicological interactions of PFAS in binary, ternary and multi-component mixtures. The results indicated that the cytotoxicity of individual PFAS to HepG2 cells increased with increasing carbon chain lengths when separated into non-sulfonated and sulfonated groups. The respective cytotoxicity of PFAS is in the order of PFDA > PFNA > PFOA > PFHpA for perfluoroalkyl carboxylic acids and in the order of PFOS > PFHxS for perfluoroalkane sulfonic acids. The toxicological interaction of PFOS and PFOA with other PFAS clearly showed a different pattern of combined toxicity in HepG2 Cells. The binary, ternary, and multi-component combinations of PFOS with PFOA, PFNA, PFDA, PFHxS, and PFHpA displayed synergistic interactions for almost all inhibitory effect levels tested, whereas, either synergistic or antagonistic effect was observed in mixtures with PFOA. Overall, the pattern of interactions of PFAS mixtures is predominated by synergism, especially at low to medium effect levels; the exceptions to this were the antagonistic interactions found in mixture with PFOA, PFHxS, and PFHpA. These cytotoxicity results may have an implication on the health risk assessment of PFAS mixtures.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Alcanossulfonatos , Ácidos Carboxílicos , Humanos , Fígado , Ácidos Sulfônicos
7.
J Hazard Mater ; 392: 122341, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092659

RESUMO

Metal mixture toxicity across soil types is a daunting challenge to risk assessment. Here, we evaluated metal mixture toxicity in Oppia nitens, using ten fixed metal mixture ratios in five Canadian soils that closely matched some of the EU PNEC reference soils. Soils were dosed with five metals (Cu, Zn, Pb, Co, Ni) as single metals (ten concentrations) and as mixtures (eight concentrations). Synchronized adult mites were exposed to metals, with survival and reproduction assessed after 28 days. We found out that (i) the differences among soils in mite sensitivity and single metals were not consistent when mites were exposed to metal mixtures, (ii) assuming concentration addition, the mixture interaction factor (MIF) showed that single metal low effect levels excessively underestimated low level metal mixture effects (iii) Zn emerged as a protective metal in most mixtures, and (iv) Soil properties such as CEC, independent of effects on metal speciation, explained more of the variation than measured metals. This study suggests that metal risk assessment should be done on a case by case basis. Further work is needed to ensure that by protecting soil-dwelling organisms from single metals, the risk from metal mixtures is appropriately protected for.


Assuntos
Metais Pesados/toxicidade , Ácaros/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Canadá , Interações Medicamentosas , Metalurgia , Mineração
8.
Elife ; 72018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29687778

RESUMO

Natural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. We show how antagonism leads to an effective 'normalization' of the ensemble ORN response, that is, the distribution of responses of the ORN population induced by any mixture is largely independent of the number of components in the mixture. This property arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform non-interacting models in odor discrimination tasks, leads to experimentally testable predictions and explains several psychophysical experiments in humans.


Assuntos
Odorantes , Percepção Olfatória , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Potenciais de Ação , Humanos , Modelos Neurológicos
9.
Environ Int ; 99: 1-14, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27697394

RESUMO

Endocrine disruptor compounds (EDCs) are environment chemicals that cause harmful effects through multiple mechanisms, interfering with hormone system resulting in alteration of homeostasis, reproduction and developmental effect. Many of these EDCs have concurrent exposure with crosstalk and common mechanisms which may lead to dynamic interactions. To carry out risk assessment of EDCs' mixture, it is important to know the detailed toxic pathway, crosstalk of receptor and other factors like critical window of exposure. In this review, we summarize the major mechanism of actions of EDCs with the different/same target organs interfering with the same/different class of hormone by altering their synthesis, metabolism, binding and cellular action. To show the impact of EDCs on life stage development, a case study on female fertility affecting germ cell is illustrated. Based on this summarized discussion, major groups of EDCs are classified based on their target organ, mode of action and potential risk. Finally, a conceptual model of pharmacodynamic interaction is proposed to integrate the crosstalk and common mechanisms that modulate estrogen into the predictive mixture dosimetry model with dynamic interaction of mixture. This review will provide new insight for EDCs' risk assessment and can be used to develop next generation PBPK/PD models for EDCs' mixture analysis.


Assuntos
Disruptores Endócrinos/toxicidade , Animais , Disruptores Endócrinos/classificação , Disruptores Endócrinos/farmacocinética , Sistema Endócrino/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Hormônios , Humanos , Modelos Biológicos , Receptor Cross-Talk , Medição de Risco
10.
J Neurosci ; 35(9): 3990-4004, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740527

RESUMO

In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.


Assuntos
Aprendizagem da Esquiva/fisiologia , Drosophila melanogaster/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Feminino , Optogenética , Rodopsina/fisiologia , Sensilas/fisiologia , Células Receptoras Sensoriais/fisiologia , Estimulação Química
11.
Chem Senses ; 39(5): 451-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24798893

RESUMO

In nature, male moths are exposed to a complex plant odorant environment when they fly upwind to a sex pheromone source in their search for mates. Plant odors have been shown to affect responses to pheromone at various levels but how does pheromone affects plant odor perception? We recorded responses from neurons within the non-pheromonal "ordinary glome ruli" of the primary olfactory center, the antennal lobe (AL), to single and pulsed stimulations with the plant odorant heptanal, the pheromone, and their mixture in the male moth Agrotis ipsilon. We identified 3 physiological types of neurons according to their activity patterns combining excitatory and inhibitory phases. Both local and projection neurons were identified in each physiological type. Neurons with excitatory responses to heptanal responded also frequently to the pheromone and showed additive responses to the mixture. Moreover, the neuron's ability of resolving successive pulses generally improved with the mixture. Only some neurons with combined excitatory/inhibitory, or purely inhibitory responses to heptanal, also responded to the pheromone. Although individual mixture responses were not significantly different from heptanal responses in these neurons, pulse resolution was improved with the mixture as compared with heptanal alone. These results demonstrate that the pheromone and the general odorant subsystems interact more intensely in the moth AL than previously thought.


Assuntos
Antenas de Artrópodes/fisiologia , Flores/química , Mariposas/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Atrativos Sexuais/fisiologia , Aldeídos , Animais , Antenas de Artrópodes/anatomia & histologia , Masculino , Odorantes , Plantas/química , Comportamento Sexual Animal/fisiologia , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA