Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 720: 137527, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325575

RESUMO

It is well-known that El Paso is the only border area in Texas that has violated national air quality standards. Mobile source emissions (including vehicle exhaust) contribute significantly to air pollution, along with other sources including industrial, residential, and cross-border. This study aims at separating unobserved vehicle emissions from air-pollution mixtures indicated by ambient air quality data. The level of contributions from vehicle emissions to air pollution cannot be determined by simply comparing ambient air quality data with traffic levels because of the various other contributors to overall air pollution. To estimate contributions from vehicle emissions, researchers employed advanced multivariate receptor modeling called positive matrix factorization (PMF) to analyze hydrocarbon data consisting of hourly concentrations measured from the Chamizal air pollution monitoring station in El Paso. The analysis of hydrocarbon data collected at the Chamizal site in 2008 showed that approximately 25% of measured Total Non-Methane Hydrocarbons (TNMHC) was apportioned to motor vehicle exhaust. Using wind direction analysis, researchers also showed that the motor vehicle exhaust contributions to hydrocarbons were significantly higher when winds blow from the south (Mexico) than those when winds blow from other directions. The results from this research can be used to improve understanding source apportionment of pollutants measured in El Paso and can also potentially inform transportation planning strategies aimed at reducing emissions across the region.

2.
Atmosphere (Basel) ; 11(11): 1243, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33489318

RESUMO

This study uses Las Vegas near-road measurements of carbon monoxide (CO) and nitrogen oxides (NOx) to test the consistency of onroad emission constraint methodologies. We derive commonly used CO to NOx ratios (ΔCO:ΔNOx) from cross-road gradients and from linear regression using ordinary least squares (OLS) regression and orthogonal regression. The CO to NOx ratios are used to infer NOx emission adjustments for a priori emissions estimates from EPA's MOtor Vehicle Emissions Simulator (MOVES) model assuming unbiased CO. The assumption of unbiased CO emissions may not be appropriate in many circumstances but was implemented in this analysis to illustrate the range of NOx scaling factors that can be inferred based on choice of methods and monitor distance alone. For the nearest road estimates (25m), the cross-road gradient and ordinary least squares (OLS) agree with each other and are not statistically different from the MOVES-based emission estimate while ΔCO:ΔNOx from orthogonal regression is significantly higher than the emitted ratio from MOVES. Using further downwind measurements (i.e., 115m and 300m) increases OLS and orthogonal regression estimates of ΔCO:ΔNOx but not cross-road gradient ΔCO:ΔNOx. The inferred NOx emissions depend on the observation-based method, as well as the distance of the measurements from the roadway and can suggest either that MOVES NOx emissions are unbiased or that they should be adjusted downward by between 10% and 47%. The sensitivity of observation-based ΔCO:ΔNOx estimates to the selected monitor location and to the calculation method characterize the inherent uncertainty of these methods that cannot be derived from traditional standard-error based uncertainty metrics.

3.
J Environ Sci (China) ; 34: 219-31, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257365

RESUMO

Ultrafine particles are associated with adverse health effects. Total Particle Number Concentration (TNC) of fine particles were measured during 2002 at the St. Louis - Midwest supersite. The time series showed overall low level with frequent large peaks. The time series was analyzed alongside criteria pollutant measurements and meteorological observations. Multiple regression analysis was used to identify further contributing factors and to determine the association of different pollutants with TNC levels. This showed the strong contribution of sulfur dioxide (SO2) and nitrogen oxides (NOx) to high TNC levels. The analysis also suggested that increased dispersion resulting from faster winds and higher mixing heights led to higher TNC levels. Overall, the results show that there were intense particle nucleation events in a SO2 rich plume reaching the site which contributed around 29% of TNC. A further 40% was associated with primary emissions from mobile sources. By separating the remaining TNC by time of day and clear sky conditions, we suggest that most likely 8% of TNC are due to regional nucleation events and 23% are associated with the general urban background.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Dióxido de Enxofre/análise , Cidades , Monitoramento Ambiental , Meteorologia , Missouri , Modelos Teóricos , Análise de Regressão , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA