Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Fitoterapia ; 177: 106055, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838822

RESUMO

This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.

2.
Arch Pharm (Weinheim) ; : e2400344, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943440

RESUMO

Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.

3.
Eur J Med Chem ; 271: 116413, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636127

RESUMO

The continued growth of data from biological screening and medicinal chemistry provides opportunities for data-driven experimental design and decision making in early-phase drug discovery. Approaches adopted from data science help to integrate internal and public domain data and extract knowledge from historical in-house data. Protein kinase (PK) drug discovery is an exemplary area where large amounts of data are accumulating, providing a valuable knowledge base for discovery projects. Herein, the evolution of PK drug discovery and development of small molecular PK inhibitors (PKIs) is reviewed, highlighting milestone developments in the field and discussing exemplary studies providing a basis for increasing data orientation of PK discovery efforts.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases , Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Estrutura Molecular
4.
Photochem Photobiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594817

RESUMO

Staphylococcus aureus is a global challenge to the clinical field and food industry. Therefore, the development of antimicrobial photodynamic therapy (aPDT) has become one of the valuable methods to control this pathogen. The antibacterial activity of photoinactivation by erythrosine (Ery) against S. aureus has been reported, but its modes of action are unclear. This study aimed to employ a proteomic approach to analyze modes of action of Ery-aPDT against S. aureus. We determined the antibacterial effect by Ery-aPDT assays, quantified reactive oxygen species (ROS) and injury to the cell membrane, and determined protein expression using a proteomic approach combined with bioinformatic tools. Ery-aPDT was effective in reducing S. aureus to undetectable levels. In addition, the increment of ROS accompanied the increase in the reduction of cell viability, and damage to cellular membranes was shown by sublethal injury. In proteomic analysis, we found 17 differentially expressed proteins. These proteins revealed changes mainly associated with defense to oxidative stress, energy metabolism, translation, and protein biosynthesis. Thus, these results suggest that the effectiveness of Ery-aPDT is due to multi-targets in the bacterial cell that cause the death of S. aureus.

5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542148

RESUMO

Bifidobacteria are probiotic microorganisms commonly found in the gastrointestinal tract, some of which are known to utilize linear arabino-oligosaccharides (AOS) as prebiotic carbohydrates. In general, the synergistic actions of exo-type α-l-arabinofuranosidases (ABFs) and endo-α-1,5-l-arabinanases (ABNs) are required for efficient arabinan degradation. In this study, the putative gene cluster for arabinan degradation was discovered in the genome of Bifidobacterium longum subsp. suis. It consists of a variety of genes encoding exo- and endo-hydrolases, sugar-binding proteins, ABC-binding cassettes, and transcriptional regulators. Among them, two endo-ABNs GH43 (BflsABN43A and BflsABN43B), two exo-ABFs GH43 (BflsABF43A and BflsABF43B), and an exo-ABF GH51 (BflsABF51) were predicted to be the key hydrolases for arabinan degradation. These hydrolase genes were functionally expressed in Escherichia coli, and their enzymatic properties were characterized. Their synergism in arabinan degradation has been proposed from the detailed modes of action. Extracellular endo-BflsABN43A hydrolyzes sugar beet and debranched arabinans into the short-chain branched and linear AOS. Intracellularly, AOS can be further degraded into l-arabinose via the cooperative actions of endo-BflsABN43B, exo-BflsABF43A with debranching activity, α-1,5-linkage-specific exo-BflsABF43B, and exo-BflsABF51 with dual activities. The resulting l-arabinose is expected to be metabolized into energy through the pentose phosphate pathway by three enzymes expressed from the ara operon of bifidobacteria. It is anticipated that uncovering arabinan utilization gene clusters and their detailed functions in the genomes of diverse microorganisms will facilitate the development of customized synbiotics.


Assuntos
Arabinose , Bifidobacterium , Polissacarídeos , Polissacarídeos/metabolismo , Família Multigênica , Oligossacarídeos , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
6.
Antibiotics (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534637

RESUMO

Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.

7.
Medicines (Basel) ; 11(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38248717

RESUMO

Background: The objective of this study is to find novel antineoplastic agents that display greater toxicity to malignant cells than to neoplasms. In addition, the mechanisms of action of representative compounds are sought. This report describes the cytotoxicity of a number of dimers of 3,5-bis(benzylidene)-4-piperidones against human malignant cells (promyelocytic leukemia HL-60 and squamous cell carcinoma HSC-2, HSC-3, and HSC-4). Methods: Tumor specificity was evaluated by the selectivity index (SI), that is the ratio of the mean CC50 for human non-malignant oral cells (gingival fibroblasts, pulp cells, periodontal ligament fibroblasts) to that for malignant cells. Results: The compounds were highly toxic to human malignant cells. On the other hand, these molecules were less toxic to human non-malignant cells. In particular, a potent lead molecule, 3b, was identified. A QSAR study revealed that the placement of electron-releasing and hydrophilic substituents into the aryl rings led to increases in cytotoxic potencies. The modes of action of a lead compound discovered in this study designated 3b were the activation of caspases-3 and -7, as well as causing PARP1 cleavage and G2 arrest, followed by sub-G1 accumulation in the cell cycle. This compound also depolarized the mitochondrial membrane and generated reactive oxygen species in human colon carcinoma HCT116 cells. In conclusion, this study has revealed that, in general, the compounds described in this report are tumor-selective cytotoxins.

8.
Environ Toxicol Chem ; 43(2): 338-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921584

RESUMO

Mechanistic effect modeling is a promising tool to improve the ecological realism of environmental risk assessment. An open question for the mechanistic modeling of metal toxicity is whether the same physiological mode of action (PMoA) could be assumed for closely related species. The implications of various modeling choices, such as the use of parameter point estimates and assumption of simplistic toxicodynamic models, are largely unexplored. We conducted life-table experiments with Daphnia longispina, Daphnia magna, and Daphnia pulex exposed to the single metals Cu, Ni, and Zn, and calibrated toxicokinetic-toxicodynamic (TKTD) models based on dynamic energy budget theory. We developed TKTD models with single and combined PMoAs to compare their goodness-of-fit and predicted population-level sensitivity. We identified the PMoA reproduction efficiency as most probable in all species for Ni and Zn, but not for Cu, and found that combined-PMoA models predicted higher population-level sensitivity than single-PMoA models, which was related to the predicted individual-level sensitivity, rather than to mechanistic differences between models. Using point estimates of parameters, instead of sampling from the probability distributions of parameters, could also lead to differences in the predicted population-level sensitivity. According to model predictions, apical chronic endpoints (cumulative reproduction, survival) are conservative for single-metal population effects across metals and species. We conclude that the assumption of an identical PMoA for different species of Daphnia could be justified for Ni and Zn, but not for Cu. Single-PMoA models are more appropriate than combined-PMoA models from a model selection perspective, but propagation of the associated uncertainty should be considered. More accurate predictions of effects at low concentrations may nevertheless motivate the use of combined-PMoA models. Environ Toxicol Chem 2024;43:338-358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Metais , Poluentes Químicos da Água , Humanos , Animais , Incerteza , Daphnia/fisiologia , Reprodução , Zinco/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067592

RESUMO

Selective oxidative C-O coupling of hydrazones with diacetyliminoxyl is demonstrated, in which diacetyliminoxyl plays a dual role. It is an oxidant (hydrogen atom acceptor) and an O-partner for the oxidative coupling. The reaction is completed within 15-30 min at room temperature, is compatible with a broad scope of hydrazones, provides high yields in most cases, and requires no additives, which makes it robust and practical. The proposed reaction leads to the novel structural family of azo compounds, azo oxime ethers, which were discovered to be highly potent fungicides against a broad spectrum of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, Sclerotinia sclerotiorum).


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/química , Hidrazonas/farmacologia , Hidrazonas/química , Éteres/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Relação Estrutura-Atividade
10.
Front Vet Sci ; 10: 1265689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808106

RESUMO

With the ban on antibiotics in the swine industry, the exploration of alternative options has highlighted phytobiotics as a promising substitute for antibiotic growth promoters, aiming to foster a more sustainable swine industry. Phytobiotics are non-nutritive natural bioactive components derived from plants that offer numerous health benefits. They exhibit antioxidative, antimicrobial, and anti-inflammatory effects. Phytobiotics can be utilized in various forms, including solid, dried, ground, or as extracts, either in crude or concentrated form. They are characterized by low residual levels, a lack of resistance development, and minimal adverse effects. These qualities make phytobiotics an attractive choice for enhancing health and productivity in swine, presenting them as a viable alternative to antibiotics. While there is a general understanding of the effects of phytobiotics, there is still a need for detailed information regarding their effectiveness and mechanisms of action in practical settings. Therefore, the purpose of this mini review was to summarize the current knowledge supporting the roles of phytobiotics and their proposed modes of action, with a specific focus on swine.

11.
J Fungi (Basel) ; 9(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754982

RESUMO

White mold disease caused by a necrotrophic ascomycete pathogen Sclerotinia sclerotiorum results in serious economic losses of soybean yield in the USA. Lack of effective genetic resistance to this disease in soybean germplasm and increasing pathogen resistance to fungicides makes white mold difficult to manage. Small cysteine-rich antifungal peptides with multi-faceted modes of action possess potential for development as sustainable spray-on bio-fungicides. We have previously reported that GMA4CG_V6 peptide, a 17-amino acid variant of the MtDef4 defensin-derived peptide GMA4CG containing the active γ-core motif, exhibits potent antifungal activity against the gray mold fungal pathogen Botrytis cinerea in vitro and in planta. GMA4CG_V6 exhibited antifungal activity against an aggressive field isolate of S. sclerotiorum 555 in vitro with an MIC value of 24 µM. At this concentration, internalization of this peptide into fungal cells occurred prior to discernible membrane permeabilization. GMA4CG_V6 markedly reduced white mold disease symptoms when applied to detached soybean leaves, pods, and stems. Its spray application on soybean plants provided robust control of this disease. GMA4CG_V6 at sub-lethal concentrations reduced sclerotia production. It was also non-phytotoxic to soybean plants. Our results demonstrate that GMA4CG_V6 peptide has potential for development as a bio-fungicide for white mold control in soybean.

13.
J Fungi (Basel) ; 9(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233268

RESUMO

One hundred twenty-five yeast strains isolated from table grapes and apples were evaluated for the control Botrytis cinerea of in vitro and in vivo. Ten strains were selected for their ability to inhibit mycelial growth of B. cinerea in vitro. In the in vivo assays, these yeasts were tested at 20 °C on 'Thompson Seedless' berries for 7 days; only three were selected (m11, me99 and ca80) because they significantly reduced the incidence of gray mold. These three yeast strains were then evaluated at different concentrations (1 × 107, 1 × 108 and 1 × 109 cells mL-1) on 'Thompson Seedless' grape berries at 20 °C. The strains m11, me99 and ca80 reduced the incidence of B. cinerea to 11.9, 26.1 and 32.1%, respectively, when the berries were submerged in a yeast suspension at a concentration of 1 × 109 cells mL-1 24 h before inoculation with B. cinerea. The most favorable pH for antifungal activity was 4.6 in the three isolates. The three yeast strains secreted the hydrolytic enzymes chitinase and ß-1-glucanase, and two strains (me99 and ca80) produced siderophores. The three yeast strains exhibited low oxidative stress tolerance and only strain m11 had the ability to produce biofilms. The strains were identified using 5.8S-ITS rDNA PCR-RFLP and correspond to the Meyerozyma guilliermondii (m11) and Aureobasidium pullulans (me99 and ca80) species.

14.
Mol Plant Pathol ; 24(8): 896-913, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036170

RESUMO

Chemical fungicides have been instrumental in protecting crops from fungal diseases. However, increasing fungal resistance to many of the single-site chemical fungicides calls for the development of new antifungal agents with novel modes of action (MoA). The sequence-divergent cysteine-rich antifungal defensins with multisite MoA are promising starting templates for design of novel peptide-based fungicides. Here, we experimentally tested such a set of 17-amino-acid peptides containing the γ-core motif of the antifungal plant defensin MtDef4. These designed peptides exhibited antifungal properties different from those of MtDef4. Focused analysis of a lead peptide, GMA4CG_V6, showed that it was a random coil in solution with little or no secondary structure elements. Additionally, it exhibited potent cation-tolerant antifungal activity against the plant fungal pathogen Botrytis cinerea, the causal agent of grey mould disease in fruits and vegetables. Its multisite MoA involved localization predominantly to the plasma membrane, permeabilization of the plasma membrane, rapid internalization into the vacuole and cytoplasm, and affinity for the bioactive phosphoinositides phosphatidylinositol 3-phosphate (PI3P), PI4P, and PI5P. The sequence motif RRRW was identified as a major determinant of the antifungal activity of this peptide. While topical spray application of GMA4CG_V6 on Nicotiana benthamiana and tomato plants provided preventive and curative suppression of grey mould disease symptoms, the peptide was not internalized into plant cells. Our findings open the possibility that truncated and modified defensin-derived peptides containing the γ-core sequence could serve as promising candidates for further development of bio-inspired fungicides.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Plantas/microbiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Defensinas/farmacologia , Defensinas/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Botrytis/metabolismo
15.
Environ Res ; 227: 115578, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848977

RESUMO

Efforts to restrict the emergence and progression of multidrug-resistant bacterial strains should heavily involve the scientific community, including government bodies, researchers, and industries, in developing new and effective photocatalytic antimicrobial agents. Such changes warrant the modernization and upscaling of materials synthesis laboratories to support and expedite the mass production of materials at the industrial scale for the benefit of humankind and the environment. Despite the massive volume of publications reporting the potential usage of different types of metal-based nanomaterials as antimicrobial agents, reviews uncovering the similarities and differences among the various products remain lacking. This review details the basic and unique properties of metal-based nanoparticles, their use as photocatalytic antimicrobial agents, and their therapeutic modes of action. It shall be noted that compared to traditional antibiotics, the mode of action of photocatalytic metal-based nanomaterials for killing microorganisms are completely different, despite displaying promising performance against antibiotic-resistant bacteria. Besides, this review uncovers the differences in the mode of actions of metal oxide nanoparticles against different types of bacteria, as well as towards viruses. Last but not least, this review comprehensively describes previous published clinical trials and medical usages involving contemporary photocatalytic antimicrobial agents.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Óxidos , Metais
16.
J Agric Food Chem ; 71(1): 267-275, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537356

RESUMO

3-Hydroxy-2-oxindole motif constitutes a core structure in numerous natural products and imparts notable biological activities. Here, we describe the design and synthesis of four series of novel 3-substituted-3-hydroxy-2-oxindole derivatives containing sulfonamide moiety along with their antiviral activities against potato virus Y (PVY). Compound 10b displayed optimal antiviral activity and superior anti-PVY activity compared with the lead compound and commercial Ningnanmycin in terms of curative and protective effects. Additionally, 10b considerably inhibited PVY systemic infection in Nicotiana benthamiana. Physiological and biochemical analyses revealed that the activities of the four crucial defense-related enzymes increased in the tobacco plant following treatment with 10b. RNA-sequencing analysis revealed that 10b substantially induced the upregulation of 38 differentially expressed genes, which were enriched in the photosynthesis pathway. These findings suggest that 10b is a promising antiviral agrochemical that can effectively control PVY infection and trigger plant host immunity to develop virus resistance. This study provides novel molecular entities and ideas for developing new pesticides.


Assuntos
Potyvirus , Vírus do Mosaico do Tabaco , Antivirais/química , Oxindóis/farmacologia , Regulação para Cima , Sulfonamidas/farmacologia , Nicotiana , Doenças das Plantas
17.
Methods Mol Biol ; 2601: 171-190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36445584

RESUMO

The urgent need of new antimicrobial agents to combat life-threatening bacterial infections demands the identification and characterization of novel compounds that interfere with new and unprecedented target pathways or structures in multiresistant bacteria. Here, bacterial cell division has emerged as a new and promising target pathway for antibiotic intervention. Compounds, which inhibit division, commonly induce a characteristic filamentation phenotype of rod-shaped bacteria, such as Bacillus subtilis. Hence, this filamentation phenotype can be used to identify and characterize novel compounds that primarily target bacterial cell division. Since novel compounds of both synthetic and natural product origin are often available in small amounts only, thereby limiting the number of assays during mode of action studies, we here describe a semiautomated, microscopy-based approach that requires only small volumes of compounds to allow for the real-time observation of their effects on living bacteria, such as filamentation or cell lysis, in high-throughput 96-well-based formats. We provide a detailed workflow for the initial characterization of multiple compounds at once and further tools for the initial, microscopy-based characterization of their antibacterial mode of action.


Assuntos
Antibacterianos , Microscopia , Antibacterianos/farmacologia , Bioensaio , Morfogênese , Bacillus subtilis
18.
Eur J Med Chem ; 247: 115039, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36566711

RESUMO

RORγt plays an important role in mediating IL-17 production and some tumor cells. It has four functional domains, of which the ligand-binding domain (LBD) is responsible for binding agonists to recruit co-activators or inverse agonists to prevent co-activator recruiting the agonists. Thus, potent ligands targeting the LBD of this protein could provide novel treatments for cancer and autoimmune diseases. In this perspective, we summarized and discussed various modes of action (MOA) of RORγt-ligand binding structures. The ligands can bind with RORγt at either orthosteric site or the allosteric site, and the binding modes at these two sites are different for agonists and inverse agonist. At the orthosteric site, the binding of agonist is to stabilize the H479-Y502-F506 triplet interaction network of RORγt. The binding of inverse agonist features as these four apparent ways: (1) blocking the entrance of the agonist pocket in RORγt; (2) directly breaking the H479-Y502 pair interactions; (3) destabilizing the triplet H479-Y502-F506 interaction network through perturbing the conformation of the side chain in M358 at the bottom of the binding pocket; (4) and destabilizing the triplet H479-Y502-F506 through changing the conformation of the side chain of residue W317 side chain. At the allosteric site of RORγt, the binding of inverse agonist was found recently to inhibit the activation of protein by interacting directly with H12, which results in unfolding of helix 11' and orientation of H12 to directly block cofactor peptide binding. This overview of recent advances in the RORγt structures is expected to provide a guidance of designing more potent drugs to treat RORγt-related diseases.


Assuntos
Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Ligantes , Receptores do Ácido Retinoico , Ligação Proteica
19.
Microorganisms ; 10(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296229

RESUMO

Given that human Campylobacter jejuni infections are rising globally and antibiotic treatment is not recommended, infected patients would substantially benefit from alternative therapeutic strategies. Short-chain fatty acids such as butyrate are known for their health benefits, including anti-microbial and anti-inflammatory effects. This prompted us to investigate potential disease-alleviating properties of butyrate treatment during acute murine C. jejuni-induced enterocolitis. Therefore, following gut microbiota depletion IL-10-/- mice were challenged with 109 viable C. jejuni cells by oral gavage and treated with butyrate via the drinking water (22 g/L) starting on day 2 post-infection. As early as day 3 post-infection, butyrate reduced diarrheal severity and frequency in treated mice, whereas on day 6 post-infection, gastrointestinal C. jejuni burdens and the overall clinical outcomes were comparable in butyrate- and placebo-treated cohorts. Most importantly, butyrate treatment dampened intestinal pro-inflammatory immune responses given lower colonic numbers of apoptotic cells and neutrophils, less distinct TNF-α secretion in mesenteric lymph nodes and lower IL-6 and MCP-1 concentrations in the ileum. In conclusion, results of our preclinical intervention study provide evidence that butyrate represents a promising candidate molecule for the treatment of acute campylobacteriosis.

20.
Antibiotics (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009974

RESUMO

In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA