Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 829-840, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900457

RESUMO

Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer.

2.
J Synchrotron Radiat ; 31(Pt 3): 540-546, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619289

RESUMO

The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis.

3.
Ultramicroscopy ; 253: 113820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586245

RESUMO

Fermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spin-orbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spin-orbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p- and s- polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spin-orbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic Korringa-Kohn-Rostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results.

4.
Ultramicroscopy ; 253: 113814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515931

RESUMO

A two-dimensional imaging spin-filter for photo-emission electron microscopy is described. The spin-filter is capable of imaging the electron spin polarization of either real space or momentum space electron distributions. As a scattering target either Au/Ir(001) comes into use, where spin sensitivity results from using spin-orbit scattering or Fe(001)-p(1×1)O that exploits exchange interaction. Both scattering targets were characterized with respect to their working points and Sherman function in a separate setup. Spin-polarization images of secondary electrons from the magnetic domains of a poly-crystalline iron sample are shown using both scattering targets. Images with a spin-filter using Au/Ir(001) show more than 104 discrete detection channels which increases the effective two-dimensional figure-of-merit (FoM) of this spin-filter by four orders of magnitude compared to single-channel spin detectors. Using the exchange scattering target two spin-components have been imaged for the first time. A method to detect all three spin-components is also outlined.

5.
Adv Mater ; 35(27): e2204120, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35817468

RESUMO

Van der Waals (vdW) materials at their 2D limit are diverse, flexible, and unique laboratories to study fundamental quantum phenomena and their future applications. Their novel properties rely on their pronounced Coulomb interactions, variety of crystal symmetries and spin-physics, and the ease of incorporation of different vdW materials to form sophisticated heterostructures. In particular, the excited state properties of many 2D semiconductors and semi-metals are relevant for their technological applications, particularly those that can be induced by light. In this paper, the recent advances made in studying out-of-equilibrium, light-induced, phenomena in these materials are reviewed using powerful, surface-sensitive, time-resolved photoemission-based techniques, with a particular emphasis on the emerging multi-dimensional photoemission spectroscopy technique of time-resolved momentum microscopy. The advances this technique has enabled in studying the nature and dynamics of occupied excited states in these materials are discussed. Then, the future research directions opened by these scientific and instrumental advancements are projected for studying the physics of 2D materials and the opportunities to engineer their band-structure and band-topology by laser fields.

6.
J Phys Condens Matter ; 34(42)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35940170

RESUMO

Using momentum microscopy with sub-µm spatial resolution, allowing momentum resolved photoemission on individual antiferromagnetic domains, we observe an asymmetry in the electronic band structure,E(k)≠E(-k), in Mn2Au. This broken band structure parity originates from the combined time and parity symmetry,PT, of the antiferromagnetic order of the Mn moments, in connection with spin-orbit coupling. The spin-orbit interaction couples the broken parity to the Néel order parameter direction. We demonstrate a novel tool to image the Néel vector direction,N, by combining spatially resolved momentum microscopy withab-initiocalculations that correlate the broken parity with the vectorN.

7.
ACS Nano ; 15(12): 19559-19569, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34852458

RESUMO

Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons, this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from that of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved photoemission electron microscopy (PEEM) and momentum microscopy during the propagation of a surface plasmon polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement toward high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.

8.
J Synchrotron Radiat ; 28(Pt 6): 1891-1908, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738944

RESUMO

The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical `pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAX II) and 1.25 MHz (at BESSY II). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to <800 nm. In this novel approach to `sub-µm-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.

9.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33561846

RESUMO

The heavy-fermion behavior in intermetallic compounds manifests itself in a quenching of local magnetic moments by developing Kondo spin-singlet many-body states combined with a drastic increase of the effective mass of conduction electrons, which occurs below the lattice Kondo temperatureTK. This behavior is caused by interactions between the strongly localized 4felectrons and itinerant electrons. A controversially discussed question in this context is how the localized electronic states contribute to the Fermi surface upon changing the temperature. One expects that hybridization between the local moments and the itinerant electrons leads to a transition from a small Fermi surface in a non-coherent regime at high temperatures to a large Fermi surface once the coherent Kondo lattice regime is realized belowTK. We demonstrate, using hard x-ray angle-resolved photoemission spectroscopy that the electronic structure of the prototypical heavy fermion compound YbRh2Si2changes with temperature between 100 and 200 K, i.e. far above the Kondo temperature,TK= 25 K, of this system. Our results suggest a transition from a small to a large Fermi surface with decreasing temperature. This result is inconsistent with the prediction of the dynamical mean-field periodic Anderson model and supports the idea of an independent energy scale governing the change of band dispersion.

10.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33236903

RESUMO

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

11.
Ultramicroscopy ; 206: 112815, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325896

RESUMO

Hemispherical deflection analyzers are the most widely used energy filters for state-of-the-art electron spectroscopy. Due to the high spherical symmetry, they are also well suited as imaging energy filters for electron microscopy. Here, we review the imaging properties of hemispherical deflection analyzers with emphasis on the application for cathode lens microscopy. In particular, it turns out that aberrations, in general limiting the image resolution, cancel out at the entrance and exit of the analyzer. This finding allows more compact imaging energy filters for momentum microscopy or photoelectron emission microscopy. For instance, high resolution imaging is possible, using only a single hemisphere. Conversely, a double pass hemispherical analyzer can double the energy dispersion, which means it can double the energy resolution at certain transmission, or can multiply the transmission at certain energy resolution.

12.
Nano Lett ; 17(11): 6606-6612, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29052414

RESUMO

Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium-tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhancement at both ends of the nanorod leads to a strongly directional emission parallel to the nanorod's long axis. The relative intensity of both contributions can be controlled by the peak intensity of the incident light.

13.
Ultramicroscopy ; 164: 78-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26520016

RESUMO

Since its introduction the importance of complementary k||-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800eV electron beam from an "in-lens" electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered kǁ-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions.

14.
Ultramicroscopy ; 159 Pt 3: 453-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363904

RESUMO

The electronic surface states on Mo(110) have been investigated using time-of-flight momentum microscopy with synchrotron radiation (hν=35 eV). This novel angle-resolved photoemission approach yields a simultaneous acquisition of the E-vs-k spectral function in the full surface Brillouin zone and several eV energy interval. (kx,ky,EB)-maps with 3.4 Å(-1) diameter reveal a rich structure of d-like surface resonances in the spin-orbit induced partial band gap. Calculations using the one-step model in its density matrix formulation predict an anomalous state with Dirac-like signature and Rashba spin texture crossing the bandgap at Γ¯ and EB=1.2 eV. The experiment shows that the linear dispersion persists away from the Γ¯-point in an extended energy- and k∥-range. Analogously to a similar state previously found on W(110) the dispersion is linear along H¯-Γ¯-H¯ and almost zero along N¯-Γ¯-N¯. The similarity is surprising since the spin-orbit interaction is 5 times smaller in Mo. A second point with unusual topology is found midway between Γ¯ and N¯. Band symmetries are probed by linear dichroism.

15.
Ultramicroscopy ; 159 Pt 3: 488-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26051657

RESUMO

Ultrahigh spectral brightness femtosecond XUV and X-ray sources like free electron lasers (FEL) and table-top high harmonics sources (HHG) offer fascinating experimental possibilities for analysis of transient states and ultrafast electron dynamics. For electron spectroscopy experiments using illumination from such sources, the ultrashort high-charge electron bunches experience strong space-charge interactions. The Coulomb interactions between emitted electrons results in large energy shifts and severe broadening of photoemission signals. We propose a method for a substantial reduction of the effect by exploiting the deterministic nature of space-charge interaction. The interaction of a given electron with the average charge density of all surrounding electrons leads to a rotation of the electron distribution in 6D phase space. Momentum microscopy gives direct access to the three momentum coordinates, opening a path for a correction of an essential part of space-charge interaction. In a first experiment with a time-of-flight momentum microscope using synchrotron radiation at BESSY, the rotation in phase space became directly visible. In a separate experiment conducted at FLASH (DESY), the energy shift and broadening of the photoemission signals were quantified. Finally, simulations of a realistic photoemission experiment including space-charge interaction reveals that a gain of an order of magnitude in resolution is possible using the correction technique presented here.

16.
Ultramicroscopy ; 159 Pt 3: 520-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25840475

RESUMO

We present a spin resolving "momentum microscope" for the high resolution imaging of the momentum distribution of photoelectrons. Measurements of the band structure of a Au(111) single crystal surface demonstrate an energy resolution of ΔE=12 meV and a momentum resolution of Δk∥=0.0049 Å(-1), measured at the line-width of the spin-orbit split Shockley surface state. The relative accuracy of the k∥ measurement in the order of 10(-4) Å(-1) reveals a deviation from the ideal two-dimensional free electron gas model of the Shockley surface state, manifested in a threefold radial symmetry. Spin resolution in the full momentum image is obtained by an imaging spin-filter based on low-energy electron diffraction at a Au passivated Ir(100) single crystal. Using working points at 10.5 eV and 11.5 eV scattering energy with a completely reversed asymmetry of ±60% we demonstrate the efficient mapping of the spin texture of the Au(111) surface state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA