Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 9(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340374

RESUMO

Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.

2.
J Theor Biol ; 462: 158-170, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30412698

RESUMO

In higher plants, the amino acid phenylalanine is a substrate of both primary and secondary metabolic pathways. The primary pathway that consumes phenylalanine, protein biosynthesis, is essential for the viability of all cells. Meanwhile, the secondary pathways are not necessary for the survival of individual cells, but benefit of the plant as a whole. Here we focus on the monolignol pathway, a secondary metabolic pathway in the cytosol that rapidly consumes phenylalanine to produce the precursors of lignin during wood formation. In planta monolignol biosynthesis involves a series of seemingly redundant steps wherein shikimate, a precursor of phenylalanine synthesized in the plastid, is transiently ligated to the main substrate of the pathway. However, shikimate is not catalytically involved in the reactions of the monolignol pathway, and is only needed for pathway enzymes to recognize their main substrates. After some steps the shikimate moiety is removed unaltered, and the main substrate continues along the pathway. It has been suggested that this portion of the monolignol pathway fulfills a regulatory role in the following way. Low phenylalanine concentrations (viz. availability) correlate with low shikimate concentrations. When shikimate concentratios are low, flux into the monolignol pathway will be limited by means of the steps requiring shikimate. Thus, when the concentration of phenylalanine is low it will be reserved for protein biosynthesis. Here we employ a theoretical approach to test this hypothesis. Simplified versions of plant phenylalanine metabolism are modelled as systems of ordinary differential equations. Our analysis shows that the seemingly redundant steps can be sufficient for the prioritization of protein biosynthesis over the monolignol pathway when the availability of phenylalanine is low, depending on system parameters. Thus, the phenylalanine precursor shikimate may signal low phenylalanine availability to secondary pathways. Because our models have been abstracted from plant phenylalanine metabolism, this mechanism of metabolic signalling, which we call the Precursor Shutoff Valve (PSV), may also be present in other biochemical networks comprised of two pathways that share a common substrate.


Assuntos
Redes e Vias Metabólicas , Fenilalanina/metabolismo , Plantas/metabolismo , Ácido Chiquímico/farmacologia , Lignina/biossíntese , Biossíntese de Proteínas
3.
Front Plant Sci ; 8: 2099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312373

RESUMO

Cinnamoyl-CoA reductase (CCR) is the first committed enzyme in the monolignol pathway for lignin biosynthesis and catalyzes the conversion of hydroxycinnamoyl-CoAs into hydroxycinnamaldehydes. In the rice genome, 33 genes are annotated as CCR and CCR-like genes, collectively called OsCCRs. To elucidate the functions of OsCCRs, their phylogenetic relationships, expression patterns at the transcription levels and biochemical characteristics were thoroughly analyzed. Of the 33 OsCCRs, 24 of them encoded polypeptides of lengths similar to those of previously identified plant CCRs. The other nine OsCCRs had much shorter peptide lengths. Phylogenetic tree and sequence similarities suggested OsCCR4, 5, 17, 18, 19, 20, and 21 as likely candidates for functional CCRs in rice. To elucidate biochemical functions, OsCCR1, 5, 17, 19, 20, 21, and 26 were heterologously expressed in Escherichia coli and the resulting recombinant OsCCRs were purified to apparent homogeneity. Activity assays of the recombinant OsCCRs with hydroxycinnamoyl-CoAs revealed that OsCCR17, 19, 20, and 21 were biochemically active CCRs, in which the NAD(P)-binding and NADP-specificity motifs as well as the CCR signature motif were fully conserved. The kinetic parameters of enzyme reactions revealed that feruloyl-CoA, a precursor for the guaiacyl (G)-unit of lignin, is the most preferred substrate of OsCCR20 and 21. This result is consistent with a high content (about 70%) of G-units in rice lignins. Phylogenetic analysis revealed that OsCCR19 and 20 were grouped with other plant CCRs involved in developmental lignification, whereas OsCCR17 and 21 were closely related to stress-responsible CCRs identified from other plant species. In agreement with the phylogenetic analysis, expression analysis demonstrated that OsCCR20 was constitutively expressed throughout the developmental stages of rice, showing particularly high expression levels in actively lignifying tissues, such as roots and stems. These results suggest that OsCCR20 is primarily involved in developmental deposition of lignins in secondary cell walls. As expected, the expressions of OsCCR17 and 21 were induced in response to biotic and abiotic stresses, such as Magnaporthe grisea and Xanthomonas oryzae pv. oryzae (Xoo) infections, UV-irradiation and high salinity, suggesting that these genes play a role in defense-related processes in rice.

4.
Proc Natl Acad Sci U S A ; 110(33): 13660-5, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901113

RESUMO

There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Lignina/química , Medicago truncatula/enzimologia , Medicago truncatula/crescimento & desenvolvimento , Acroleína/análogos & derivados , Acroleína/análise , Oxirredutases do Álcool/deficiência , Parede Celular/química , Clonagem Molecular , Biologia Computacional , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Análise em Microsséries , Microscopia Ultravioleta , Mutagênese , Imagem Óptica , Retroelementos/genética , Temperatura
5.
Front Plant Sci ; 4: 70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577013

RESUMO

Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targets for bioenergy feedstock development through either biotechnology or traditional plant breeding. In addition, lignin synthesis has long been implicated as an important plant defense mechanism against pathogens, because lignin synthesis is often induced at the site of pathogen attack. This article explores the impact of lignin modifications on the susceptibility of a range of plant species to their associated pathogens, and the implications for development of feedstocks for the second-generation biofuels industry. Surprisingly, there are some instances where plants modified in lignin synthesis may display increased resistance to associated pathogens, which is explored in this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA