Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Virology ; 600: 110212, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39232265

RESUMO

Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.

2.
Pathogens ; 13(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204284

RESUMO

This article deals with Central Nervous System (CNS) disorders of marine mammals as putative neuropathology and neuropathogenesis models for their human and, to some extent, their animal "counterparts" in a dual "One Health" and "Translational Medicine" perspective. Within this challenging context, special emphasis is placed upon Alzheimer's disease (AD), provided that AD-like pathological changes have been reported in the brain tissue of stranded cetacean specimens belonging to different Odontocete species. Further examples of potential comparative pathology interest are represented by viral infections and, in particular, by "Subacute Sclerosing Panencephalitis" (SSPE), a rare neurologic sequela in patients infected with Measles virus (MeV). Indeed, Cetacean morbillivirus (CeMV)-infected striped dolphins (Stenella coeruleoalba) may also develop a "brain-only" form of CeMV infection, sharing neuropathological similarities with SSPE. Within this framework, the global threat of the A(H5N1) avian influenza virus is another major concern issue, with a severe meningoencephalitis occurring in affected pinnipeds and cetaceans, similarly to what is seen in human beings. Finally, the role of Brucella ceti-infected, neurobrucellosis-affected cetaceans as putative neuropathology and neuropathogenesis models for their human disease counterparts is also analyzed and discussed. Notwithstanding the above, much more work is needed before drawing the conclusion marine mammal CNS disorders mirror their human "analogues".

3.
Viruses ; 16(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205313

RESUMO

Feline morbillivirus (FeMV) has been associated with feline health, although its exact role in pathogenesis is still debated. In this study, an indirect enzyme-linked immunosorbent assay (i-ELISA) targeting a recombinant matrix protein of FeMV (rFeMV-M) was developed and assessed in comparison to a Western blotting (WB) assay. The i-ELISA was evaluated using blood samples from 136 cats that were additionally tested with real-time reverse-transcription PCR (RT-qPCR). The i-ELISA exhibited a sensitivity of 90.1%, specificity of 75.6%, positive predictive value of 88.2%, and negative predictive value of 79.1%. The agreement between i-ELISA and WB analyses was substantial (a κ coefficient of 0.664 with a 95% confidence interval of 0.529 to 0.799). Within the study group, 68.4% (93/136) of the cats were serologically positive in the i-ELISA and 66.9% (91/136) in the WB assay, with 11.8% (11/93) of false positivity with the i-ELISA. However, only 8.1% (11/136) of the cats tested positive for FeMV using RT-qPCR (p < 0.001). The developed i-ELISA proved effective in identifying FeMV-infected cats and indicated the prevalence of FeMV exposure. Combining FeMV antibody detection through i-ELISA with FeMV RT-qPCR could offer a comprehensive method to determine and monitor FeMV infection status. Nevertheless, this assay still requires refinement due to a significant number of false positive results, which can lead to the misdiagnosis of cats without antibodies as having antibodies. This study also provided the first evidence of seroprevalence against FeMV among cat populations in Thailand, contributing valuable insights into the geographic distribution and prevalence of this virus.


Assuntos
Anticorpos Antivirais , Doenças do Gato , Ensaio de Imunoadsorção Enzimática , Infecções por Morbillivirus , Morbillivirus , Sensibilidade e Especificidade , Animais , Gatos , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Morbillivirus/imunologia , Doenças do Gato/virologia , Doenças do Gato/diagnóstico , Doenças do Gato/imunologia , Infecções por Morbillivirus/veterinária , Infecções por Morbillivirus/diagnóstico , Infecções por Morbillivirus/imunologia , Infecções por Morbillivirus/virologia , Proteínas Recombinantes/imunologia , Feminino , Western Blotting/veterinária , Masculino , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética
4.
Animals (Basel) ; 14(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39199951

RESUMO

Neurobrucellosis in cetaceans, caused by Brucella ceti, is a relevant cause of death in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Serological tests are not used as a routinary technique for the diagnosis of this infection. We briefly describe the pathological findings of nine free-ranging stranded cetaceans diagnosed with Brucella disease or infection in our veterinary necropsy service from 2012 to 2022. The findings included focal diskospondylitis and non-suppurative meningitis, choroiditis and radiculitis. Additionally, an exploratory serological study was conducted in sixty-six frozen sera collected in the period 2012-2022 from fifty-seven striped dolphins, five Risso's dolphins (Grampus griseus), two common bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis) and one pilot whale (Globicephala melas) to compare antibody levels in Brucella-infected (n = 8) and non-infected (n = 58) animals, classified by the cause of death, sex, age class and cetacean morbillivirus (CeMV) infection status. The authors hypothesized that active infection in cases of neurobrucellosis would elicit a stronger, detectable humoral response compared to subclinical infections. We performed a commercial competition ELISA (cELISA) using serial serum dilutions for each sample, considering a percentage of inhibition (PI) of ≥40% as positive. A titer of 1:160 was arbitrarily determined as the seropositivity threshold. Seropositive species included striped dolphins and Risso's dolphins. Seroprevalence was higher in animals with neurobrucellosis (87.5%) compared to the overall seroprevalence (31.8%) and to other causes of death, indicating, likely, a high sensitivity but low specificity for neurobrucellosis. Animals with chronic CeMV seemed to have higher seroprevalences, as well as juveniles, which also had a higher disease prevalence. These results indicate, as in other studies, that antibodies are not decisive against clinical brucellosis, although they may indicate a carrier state, and that CeMV may influence Brucella epidemiology. More research is required to elucidate the epidemiology and pathogenesis and to resolve the complicated host-pathogen interaction in Brucella species.

5.
Sci Rep ; 14(1): 16605, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026076

RESUMO

Canine distemper virus (CDV) affects many domestic and wild animals. Variations among CDV genome linages could lead to vaccination failure. To date, there are several vaccine alternatives, such as a modified live virus and a recombinant vaccine; however, most of these alternatives are based on the ancestral strain Onderstepoort, which has not been circulating for years. Vaccine failures and the need to update vaccines have been widely discussed, and the development of new vaccine candidates is necessary to reduce circulation and mortality. Current vaccination alternatives cannot be used in wildlife animals due to the lack of safety data for most of the species, in addition to the insufficient immune response against circulating strains worldwide in domestic species. Computational tools, including peptide-based therapies, have become essential for developing new-generation vaccines for diverse models. In this work, a peptide-based vaccine candidate with a peptide library derived from CDV H and F protein consensus sequences was constructed employing computational tools. The molecular docking and dynamics of the selected peptides with canine MHC-I and MHC-II and with TLR-2 and TLR-4 were evaluated. In silico safety was assayed through determination of antigenicity, allergenicity, toxicity potential, and homologous canine peptides. Additionally, in vitro safety was also evaluated through cytotoxicity in cell lines and canine peripheral blood mononuclear cells (cPBMCs) and through a hemolysis potential assay using canine red blood cells. A multiepitope CDV polypeptide was constructed, synthetized, and evaluated in silico and in vitro by employing the most promising peptides for comparison with single CDV immunogenic peptides. Our findings suggest that predicting immunogenic CDV peptides derived from most antigenic CDV proteins could aid in the development of new vaccine candidates, such as multiple single CDV peptides and multiepitope CDV polypeptides, that are safe in vitro and optimized in silico. In vivo studies are being conducted to validate potential vaccines that may be effective in preventing CDV infection in domestic and wild animals.


Assuntos
Vírus da Cinomose Canina , Cinomose , Vacinas Virais , Vírus da Cinomose Canina/imunologia , Animais , Cães , Vacinas Virais/imunologia , Cinomose/prevenção & controle , Cinomose/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/química , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais de Fusão/imunologia
6.
Viruses ; 16(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39066240

RESUMO

Morbillivirus canis (canine distemper virus (CDV)) is recognized as a multihost pathogen responsible for a transmissible disease affecting both domestic and wild animals. A considerable portion of wildlife populations remain unvaccinated due to a lack of safety and immunogenicity data on existing vaccines for the prevention of CDV infection in these species. This review aimed to assess the current state of CDV vaccination research for both domestic and wild animals and to explore novel vaccine candidates through in vivo studies. It also sought to synthesize the scattered information from the extensive scientific literature on CDV vaccine research, identify key researchers in the field, and highlight areas where research on CDV vaccination is lacking. A scoping review was conducted across four databases following the PRISMA-ScR protocol, with information analyzed using absolute and relative frequencies and 95% confidence intervals (CIs) for study number proportions. Among the 2321 articles retrieved, 68 met the inclusion criteria and focused on CDV vaccines in various animal species, such as dogs, ferrets, minks, and mice. Most of the scientific community involved in this research was in the USA, Canada, France, and Denmark. Various vaccine types, including MLV CDV, recombinant virus, DNA plasmids, inactivated CDV, and MLV measles virus (MeV), were identified, along with diverse immunization routes and schedules employed in experimental and commercial vaccines. Safety and efficacy data were summarized. Notably, 37 studies reported postimmunization CDV challenge, primarily in dogs, revealing the survival rates of vaccinated animals. In summary, CDV vaccines generally demonstrate an acceptable safety profile in dogs and show promise as a means of controlling CDV. However, significant gaps in vaccine research persist, particularly concerning wildlife reservoirs, indicating the need for further investigation.


Assuntos
Animais Domésticos , Animais Selvagens , Vírus da Cinomose Canina , Cinomose , Vacinação , Vacinas Virais , Animais , Animais Selvagens/virologia , Vírus da Cinomose Canina/imunologia , Vírus da Cinomose Canina/genética , Vacinas Virais/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/administração & dosagem , Cinomose/prevenção & controle , Cinomose/imunologia , Cinomose/virologia , Vacinação/veterinária , Cães , Furões , Camundongos , Imunogenicidade da Vacina , Vison/virologia , Vison/imunologia
7.
J Virol ; 98(8): e0065724, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39007615

RESUMO

RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.


Assuntos
Vírus da Cinomose Canina , Cinomose , Furões , Variação Genética , Mutação , Animais , Vírus da Cinomose Canina/genética , Vírus da Cinomose Canina/fisiologia , Cinomose/virologia , Células Vero , Chlorocebus aethiops , Genoma Viral , Adaptação Fisiológica/genética , Replicação Viral , Adaptação Biológica , Cães
8.
Methods Mol Biol ; 2808: 57-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743362

RESUMO

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.


Assuntos
Vírus Defeituosos , Genoma Viral , Morbillivirus , Genética Reversa , Replicação Viral , Genética Reversa/métodos , Vírus Defeituosos/genética , Animais , Replicação Viral/genética , Morbillivirus/genética , Humanos , Vírion/genética , Células Vero , Chlorocebus aethiops , RNA Viral/genética
9.
Emerg Infect Dis ; 30(6): 1296-1298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781986

RESUMO

Cetacean morbillivirus is an etiologic agent associated with strandings of live and dead cetacean species occurring sporadically or as epizootics worldwide. We report 2 cases of cetacean morbillivirus in humpback whales (Megaptera novaeangliae) in Brazil and describe the anatomopathological, immunohistochemical, and molecular characterization findings in the specimens.


Assuntos
Jubarte , Infecções por Morbillivirus , Morbillivirus , Filogenia , Animais , Morbillivirus/isolamento & purificação , Morbillivirus/genética , Morbillivirus/classificação , Brasil , Infecções por Morbillivirus/veterinária
10.
Methods Mol Biol ; 2808: 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743358

RESUMO

We have adopted a real-time assay based on a dual-split reporter to assess cell-cell fusion mediated by the measles virus (MeV) membrane fusion machinery. This reporter system is comprised of two expression vectors, each encoding a segment of Renilla luciferase fused to a segment of GFP. To regain function, the two segments need to associate, which is dependent on cell-cell fusion between effector cells expressing the MeV fusion machinery and target cells expressing the corresponding MeV receptor. By measuring reconstituted luciferase activity, we can follow the kinetics of cell-cell fusion and quantify the extent of fusion. This assay lends itself to the study of the MeV fusion machinery comprised of the attachment and fusion glycoproteins, the matrix protein, and the MeV receptors. Moreover, entry inhibitors targeting attachment or fusion can be readily screened using this assay. Finally, this assay can be easily adopted to study the entry of other members of the Paramyxoviridae, as we have demonstrated for the henipaviruses.


Assuntos
Fusão Celular , Vírus do Sarampo , Internalização do Vírus , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Humanos , Animais , Fusão Celular/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Chlorocebus aethiops , Linhagem Celular , Células Vero , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo
11.
Methods Mol Biol ; 2808: 105-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743365

RESUMO

Measles is a highly infectious disease that continues to spread mainly in developing countries, often resulting in child mortality. Despite the existence of effective vaccines, no specific antivirals are available as targeted therapy to combat measles virus (MeV). The implementation of genome-wide siRNA screens can provide a powerful platform to discover host factors that mediate MeV infection and replication, which could be essential to develop novel therapeutic strategies against this disease. Here, we describe a human genome-wide siRNA screen for MeV.


Assuntos
Vírus do Sarampo , RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral/genética , Genoma Humano , Interferência de RNA
12.
Methods Mol Biol ; 2808: 197-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743372

RESUMO

Canine distemper virus (CDV) is a highly contagious pathogen within the morbillivirus genus infecting a wide range of different carnivore species. The virus shares most biological features with other closely related morbilliviruses, including clinical signs, tissue tropism, and replication cycle in the respective host organisms.In the laboratory environment, experimental infections of ferrets with CDV were established as a potent surrogate model for the analysis of several aspects of the biology of the human morbillivirus, measles virus (MeV). The animals are naturally susceptible to CDV and display severe clinical signs resembling the disease seen in patients infected with MeV. As seen with MeV, CDV infects immune cells and is thus associated with a strong transient immunosuppression. Here we describe several methods to evaluate viral load and parameters of immunosuppression in blood-circulating immune cells isolated from CDV-infected animals.


Assuntos
Modelos Animais de Doenças , Vírus da Cinomose Canina , Cinomose , Furões , Carga Viral , Animais , Furões/virologia , Vírus da Cinomose Canina/patogenicidade , Cinomose/virologia , Cinomose/patologia
13.
Methods Mol Biol ; 2808: 153-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743369

RESUMO

Domestic cats are the natural host of feline morbilliviruses (FeMV). Although other species can also be infected (such as dogs and opossums), no laboratory animal infection model is established so far. In vitro models for studying the molecular pathogenesis are therefore needed. For this purpose, propagation and titration of FeMV are key techniques. Unlike other morbilliviruses, such as canine distemper virus (CDV) or measles virus (MV), FeMV is a slow growing virus in cell culture and is difficult to titrate using classical plaque techniques. Here we describe methods for the efficient isolation of FeMV from natural sources (e.g., urine), the propagation of viral stocks, and their titration. In addition, we establish the generation of a three-dimensional infection model mimicking the feline tubular epithelium.


Assuntos
Infecções por Morbillivirus , Morbillivirus , Animais , Gatos , Morbillivirus/patogenicidade , Morbillivirus/genética , Morbillivirus/fisiologia , Infecções por Morbillivirus/veterinária , Infecções por Morbillivirus/virologia , Rim/virologia , Rim/citologia , Doenças do Gato/virologia , Células Cultivadas , Cultura de Vírus/métodos , Modelos Animais de Doenças , Cultura Primária de Células/métodos
14.
Virus Evol ; 10(1): veae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476867

RESUMO

Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.

15.
Microorganisms ; 12(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543644

RESUMO

Bats are widely distributed in Brazil, including the Amazon region, and their association with viral pathogens is well-known. This work aimed to evaluate the metavirome in samples of Molossus sp. bats captured in the Brazilian Amazon from 2019 to 2021. Lung samples from 58 bats were divided into 13 pools for RNA isolation and sequencing followed by bioinformatic analysis. The Retroviridae family showed the highest abundance of viral reads. Although no complete genome could be recovered, the Paramyxoviridae and Dicistroviridae families showed the formation of contigs with satisfactory identity and size characteristics for further analysis. One contig of the Paramyxoviridae family was characterized as belonging to the genus Morbillivirus, being grouped most closely phylogenetically to Porcine morbillivirus. The contig related to the Dicistroviridae family was identified within the Cripavirus genus, with 94%, 91%, and 42% amino acid identity with Culex dicistrovirus 2, Rhopalosiphum padi, and Aphid lethal paralysis, respectively. The presence of viruses in bats needs constant updating since the study was able to identify viral sequences related to families or genera still poorly described in the literature in association with bats.

16.
Viruses ; 16(2)2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400020

RESUMO

This study aimed at investigating the genetic lineages of peste des petits ruminants virus (PPRV) currently circulating in Burkina Faso. As part of PPR surveillance in 2021 and 2022, suspected outbreaks in different regions were investigated. A risk map was produced to determine high-risk areas for PPR transmission. Based on alerts, samples were obtained from three regions and all sampled localities were confirmed to fall within PPR high risk areas. We collected swab samples from the eyes, mouth, and nose of sick goats. Some tissue samples were also collected from dead animals suspected to be infected by PPRV. In total, samples from 28 goats were analysed. Virus confirmation was performed with RT-PCR amplification targeting the nucleocapsid (N) gene. Partial N gene sequencing (350 bp) was carried out using the RT-PCR products of positives samples to characterise the circulating lineages. Eleven sequences, including ten new sequences, have been obtained. Our study identified the presence of the PPRV lineage IV in the three studied regions in Burkina Faso with a genetic heterogeneity recorded for the sequences analysed. Previously published data and results of this study suggest that PPRV lineage IV seems to be replacing lineage II in Burkina Faso.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/epidemiologia , Burkina Faso/epidemiologia , Epidemiologia Molecular , Doenças das Cabras/epidemiologia , Filogenia , Ruminantes , Cabras
17.
Braz J Microbiol ; 55(1): 933-941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305952

RESUMO

Infectious diseases are one of the most concerning threats to maned wolves (Chrysocyon brachyurus) due to the potential impact on free-ranging populations. The species is currently classified as vulnerable according to the national list of threatened species and occurs mainly in open habitats, such as the Cerrado, a tropical savannah, which comprises its main distribution area in Brazil. In the northeastern region, it occurs in the Cerrado of Bahia, Piauí, Maranhão, and Tocantins states. Therefore, this study aimed to investigate the occurrence of infectious agents in Chrysocyon brachyurus through an epidemiological assessment of free-ranging individuals in western Bahia, specifically in the Barreiras microregion, a Cerrado area intensely fragmented and anthropized by agricultural activity. Eleven specimens were evaluated for serological titration, antigen research, and genetic material research for canine distemper virus (CDV), canine parvovirus (CPV), adenovirus-canine-type 1 (CAdV-1), canine coronavirus (CCoV), Leptospira interrogans and Toxoplasma gondii from 2020 to 2022. In addition to maned wolves, domestic dogs were also evaluated and tested. All maned wolves (100%) evaluated by the dot-ELISA technique exhibited immunoglobulin M (IgM) and seven (64%) exhibited immunoglobulin G (IgG) against CDV and CPV, while 100% exhibited IgG against CDV when using the immunochromatographic technique. Regarding CAdV-1, 90% were seropositive for IgG, while 64% exhibited IgG against T. gondii. Nine dogs from the region were also sampled, and all (100%) exhibited IgM and IgG against CDV and CPV. For IgG against T. gondii and against CAdV-1, 90% of the animals were seropositive. Molecular evaluation yielded negative results for all maned wolves and dogs assessed for CAdV-1, CDV, and T. gondii, as well as the CCoV antigen. These data indicate the occurrence of viral agents and Toxoplasma gondii in maned wolves and dogs, suggesting circulation in both populations.


Assuntos
Canidae , Vírus da Cinomose Canina , Parvovirus Canino , Toxoplasma , Lobos , Animais , Cães , Brasil/epidemiologia , Imunoglobulina G , Toxoplasma/genética , Imunoglobulina M
18.
Microb Cell Fact ; 23(1): 45, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341572

RESUMO

Peste des petits ruminants (PPR) is an acute, contact infectious disease caused by the small ruminant morbillivirus (SRMV), and its morbidity in goats and sheep can be up to 100% with significant mortality. Nanobody generated from camelid animals such as alpaca has attracted wide attention because of its unique advantages compared with conventional antibodies. The main objective of this study was to produce specific nanobodies against SRMV and identify its characteristics. To obtain the coding gene of SRMV-specific nanobodies, we first constructed an immune phage-displayed library from the VHH repertoire of alpaca that was immunized with SRMV-F and -H proteins. By using phage display technology, the target antigen-specific VHHs can be obtained after four consecutive rounds of biopanning. Results showed that the size of this VHH library was 2.26 × 1010 CFU/mL and the SRMV-F and -H specific phage particles were greatly enriched after four rounds of biopanning. The positive phage clones were selected and sequenced, and total of five independent different sequences of SRMV-specific nanobodies were identified. Subsequently, the DNA fragments of the five nanobodies were cloned into E. coli BL21(DE3), respectively, and three of them were successfully expressed and purified. Specificity and affinity towards inactivated SRMV of these purified nanobodies were then evaluated using the ELISA method. Results demonstrated that NbSRMV-1-1, NbSRMV-2-10, and NbSRMV-1-21 showed no cross-reactivity with other antigens, such as inactivated BTV, inactivated FMDV, His-tag labeled protein, and BSA. The ELISA titer of these three nanobodies against inactivated SRMV was up to 1:1000. However, only NbSRMV-1-21 displayed SRMV neutralizing activity at a maximum dilution of 1:4. The results indicate that the nanobodies against SRMV generated in this study could be useful in future applications. This study provided a novel antibody tool and laid a foundation for the treatment and detection of SRMV.


Assuntos
Bacteriófagos , Camelídeos Americanos , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Anticorpos de Domínio Único , Animais , Ovinos , Anticorpos de Domínio Único/genética , Escherichia coli/genética , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/prevenção & controle , Anticorpos , Antígenos , Cabras
19.
Vet Res Commun ; 48(1): 569-578, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672171

RESUMO

Feline morbillivirus (FeMV) was identified for the first time in cats in 2012 in Hong Kong. Although its association with chronic kidney disease in cats has attracted the attention of researchers, its clinical significance as an acute infection has not been reported. Previously, we reported FeMV detection using next-generation sequence-based comprehensive genomic analysis of plasma samples from cats with suspected acute febrile infections. Here, we conducted an epidemiological survey to detect FeMV by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using blood samples from cats in Japan. FeMV was detected in 32/102 blood samples (31.4%) from cats with suspected acute viral infections. Most of the FeMV-positive cats had clinical findings consistent with acute viral infections, including fever, leukopenia, thrombocytopenia and jaundice. No FeMV was detected in healthy cats or clinically ill cats that visited veterinary hospitals. Phylogenetic analysis classified FeMV L genes into various FeMV subtypes. We also necropsied a FeMV-positive cat that died of a suspected acute infection. On necropsy, FeMV was detected in systemic organs, including the kidneys, lymph nodes and spleen by qRT-PCR and immunohistochemical staining. These results suggest that FeMV infections may cause acute symptomatic febrile infections in cats. A limitation of this study was that the involvement of other pathogens that cause febrile illnesses could not be ruled out and this prevented a definitive conclusion that FeMV causes febrile disease in infected cats. Further studies that include experimental infections are warranted to determine the pathogenicity of FeMV in cats.


Assuntos
Doenças do Gato , Infecções por Morbillivirus , Morbillivirus , Gatos , Animais , Filogenia , Morbillivirus/genética , Infecções por Morbillivirus/veterinária , Infecções por Morbillivirus/diagnóstico , Rim , Doenças do Gato/diagnóstico
20.
Comp Immunol Microbiol Infect Dis ; 105: 102114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142559

RESUMO

Modified live canine distemper virus (CDV) vaccines are widely used and considered both safe and effective. Although there are occasional literature reports of suspected vaccine-induced disease, there are none where the vaccine strain has been identified in affected tissues. Here we describe two such cases in different litters. In litter A, five of ten puppies presented with fever, anorexia, vomiting, and diarrhea a few days post-vaccination. Four puppies died or were euthanized, and autopsy revealed atypical necrosis of the lymphoid tissue. In litter B, two of five puppies developed typical neurological signs some months post-vaccination and autopsy revealed encephalitis. In all cases, affected organs tested positive for CDV on immunohistochemistry, and CDV RNA extracted from the lesions confirmed the presence of vaccine strain. Since multiple puppies from each litter were affected, it cannot be excluded without further studies that some undiagnosed inherited immunodeficiency disorder may have been involved.


Assuntos
Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Cães , Animais , Vacinas Virais/efeitos adversos , Cinomose/diagnóstico , Cinomose/prevenção & controle , Vacinação/efeitos adversos , Vacinação/veterinária , Vacinas Atenuadas/efeitos adversos , Vírus da Cinomose Canina/genética , Doenças do Cão/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA