Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38644561

RESUMO

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Descanso , Convulsões , Humanos , Masculino , Feminino , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Adulto Jovem , Convulsões/fisiopatologia , Convulsões/diagnóstico por imagem , Pessoa de Meia-Idade , Mapeamento Encefálico , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Adolescente , Atividade Motora/fisiologia , Atividade Motora/efeitos dos fármacos
2.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633786

RESUMO

Background: The ability to relearn a lost skill is critical to motor recovery after a stroke. Previous studies indicate that stroke typically affects the processes underlying motor control and execution but not the learning of those skills. However, these prior studies could have been confounded by the presence of significant motor impairments and/or have not focused on motor acuity tasks (i.e., tasks focusing on the quality of executed actions) that have direct functional relevance to rehabilitation. Methods: Twenty-five participants (10 stroke; 15 controls) were recruited for this prospective, case-control study. Participants learned a novel foot-trajectory tracking task on two consecutive days while walking on a treadmill. On day 1, participants learned a new gait pattern by performing a task that necessitated greater hip and knee flexion during the swing phase of the gait. On day 2, participants repeated the task with their training leg to test retention. An average tracking error was computed to determine online and offline learning and was compared between stroke survivors and uninjured controls. Results: Stroke survivors were able to improve their tracking performance on the first day (p=0.033); however, the amount of learning in stroke survivors was lower in comparison with the control group on both days (p≤0.05). Interestingly, the offline gains in motor learning were higher in stroke survivors when compared with uninjured controls (p=0.011). Conclusions: The results suggest that even high-functioning stroke survivors may have difficulty acquiring new motor skills related to walking, which may be related to the underlying neural damage caused at the time of stroke. Furthermore, it is likely that stroke survivors may require longer training with adequate rest to acquire new motor skills, and rehabilitation programs should target motor skill learning to improve outcomes after stroke.

3.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38544083

RESUMO

People with intellectual disability (ID) are often subject to motor impairments such as altered gait. As gait is a task involving motor and perceptive dimensions, perceptual-motor training is an efficient rehabilitation approach to reduce the risk of falls which grows with age. Virtual, augmented, and mixed reality are recent tools which enable interaction with 3D elements at different levels of immersion and interaction. In view of the countless possibilities that this opens, their use for therapeutic purposes is constantly increasing. Therefore, the aim of this study was to investigate the influence a mixed reality activity could have on motor and cognitive abilities in eighteen adults with intellectual disability. For three months, once a week, they had around 20 min to pop virtual balloons with a finger using a Microsoft HoloLens2® head-mounted mixed-reality device. Motor skills were assessed through gait analysis and cognitive abilities were measured with the Montréal Cognitive Assessment. Both walking speed and cognitive score increased after training. In conclusion, this study demonstrates that mixed reality holds potential to get used for therapeutic purposes in adults with ID.


Assuntos
Realidade Aumentada , Deficiência Intelectual , Adulto , Humanos , Velocidade de Caminhada , Projetos Piloto , Marcha , Cognição
4.
Scand J Med Sci Sports ; 34(1): e14517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814520

RESUMO

Eccentric, compared to concentric exercise, is proposed to involve different neuro-motor processing strategies and a higher level of mental demand. This study compared eccentric and concentric cycling at matched perceived effort and torque for the mental demand and related-cortical activation patterns. Nineteen men (30 ± 6 years) performed four different 5-min cycling conditions at 30 RPM on a semi-recumbent isokinetic cycle ergometer: (1) concentric at a moderate perceived effort (23 on the CR100® scale) without torque feedback; (2) concentric and (3) eccentric at the same average torque produced in the first condition; and (4) eccentric at the same moderate perceived effort than the first concentric condition. The conditions two to four were randomized. After each condition, mental demand was monitored using the NASA Task Load Index scale. Changes in oxy-(O2 Hb) and deoxy-(HHb) hemoglobin during exercise were measured over both prefrontal cortices and the right parietal lobe from a 15-probe layout using a continuous-wave NIRS system. Mental demand was significantly higher during eccentric compared to concentric cycling (+52%, p = 0.012) and when the exercise intensity was fixed by the torque rather than the perceived effort (+70%, p < 0.001). For both torque- or perceived effort-matched exercises, O2 Hb increased significantly (p < 0.001) in the left and right prefrontal cortices, and right parietal lobe, and HHb decreased in the left, and right, prefrontal cortices during eccentric compared to concentric cycling. This study supports that acute eccentric cycling, compared to concentric cycling, involves a higher mental demand, and frontoparietal network activation.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Masculino , Exercício Físico , Terapia por Exercício , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Torque , Adulto Jovem , Adulto
5.
Percept Mot Skills ; 131(1): 311-325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048598

RESUMO

In this investigation, we examined the influence of two approaches of motor skill learning (differential learning and repetition-based) for an explosive motor skill. Twenty-seven individuals completed four training sessions of a standing broad jump task, presented with either differential training or a repetition-based approach. We collected pre-and post-training assessments that included maximal jump distances used to index performance and the recording of ground reaction forces to determine potential biomechanical changes (normalized vertical ground reaction force - GRFvert, rate of force development - RFD, and horizontal take-off velocity - Vhor). Results showed that differential training exhibited greater jump distances than repetition-based training (p < .001) but no training effect was found for jump distances between pre- and post-assessments for either training approach (p = .15). However, a significant increase occurred for Vhor with greater velocities achieved following training (p = .03). Overall, differential training failed to show the expected performance enhancements for a discrete, explosive motor task; this may be related to limited exposure and task specific demands of the movement. Further research is needed to better understand the task factors influencing skill acquisition from differential training.


Assuntos
Exercício Pliométrico , Humanos , Movimento , Posição Ortostática
6.
Pediatr Exerc Sci ; : 1-15, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065088

RESUMO

PURPOSE: The purpose of this review was to evaluate the effects of physical activity on children's free recall, cued recall, and recognition episodic memory and to explore potential moderating factors. METHODS: The following databases were searched: PubMed, ERIC, APA Psych Info, CINHAL, SPORTDiscus, and Google Scholar. Studies were included if: (1) participants were aged 4-18 years, (2) participants were typically developed, (3) participants were randomized to groups, (4) interventions employed gross movements, (5) sedentary group was used for control, (6) memory tests were quantitative, and (7) employed acute or chronic intervention. RESULTS: 14 studies met inclusion criteria resulting in the analysis of data from 7 free recall, 7 cued recall, and 8 recognition memory tests. Physical activity was found to have a positive influence on tests free (g = 0.56), cued recall (g = 0.67), and no influence on tests of recognition (g = 0.06). While some moderator analyses were significant, the authors do not consider these results to be meaningful in application. CONCLUSIONS: The effects of acute and chronic physical activity enhance specific aspects of long-term episodic memory. These findings suggest physical activity interventions developed for children may be expected to benefit some, but not all, types of memory processing.

7.
Front Hum Neurosci ; 17: 1305331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125713

RESUMO

A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.

8.
Cereb Cortex ; 33(23): 11431-11445, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37814365

RESUMO

Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.


Assuntos
Consolidação da Memória , Desempenho Psicomotor , Humanos , Aprendizagem , Destreza Motora , Sono , Plasticidade Neuronal
9.
J Musculoskelet Neuronal Interact ; 23(3): 308-315, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37654216

RESUMO

OBJECTIVE: To investigate the effect of dual tasking on postural control in individuals with schizophrenia. METHODS: Fifteen outpatients with schizophrenia and 15 healthy controls were included. Postural control was assessed with postural sway velocity (PSV) using Balance Master System during three different tasks: single task (standing on a force platform), cognitive task (categorical verbal fluency) and motor task (holding a cup of water) in four conditions: on firm surface with eyes open (1) and closed (2), on foam surface with eyes open (3) and closed (4). RESULTS: Individuals with schizophrenia presented higher PSV during single standing on foam surface with eyes open and closed. During the cognitive task, they showed higher PSV on foam surface with eyes closed. During the motor task PSV in schizophrenia group was higher on firm surface with eyes closed and on foam surface with eyes open and closed. Individuals with schizophrenia showed higher PSV during cognitive task on firm surface with eyes closed compared to the single task. CONCLUSIONS: Dual tasking results in a deterioration in postural control in individuals with schizophrenia. A cognitive task specifically alters postural control in the absence of visual information suggesting a possible sensorimotor dysfunction in this population.


Assuntos
Esquizofrenia , Humanos , Equilíbrio Postural
10.
Data Brief ; 50: 109540, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37727590

RESUMO

Biomedical Electroencephalography (EEG) signals are the result of measuring the electric potential difference generated on the scalp surface by neural activity corresponding to each brain area. Accurate and automatic detection of neural activity from the upper and lower limbs using EEG may be helpful in rehabilitating people suffering from mobility limitations or disabilities. This article presents a dataset containing 7440 CSV files from 60 test subjects during motor and motor imagery tasks. The motor and motor imagery tasks performed by the test subjects were: Closing Left Hand (CLH), Closing Right Hand (CRH), Dorsal flexion of Left Foot (DLF), Plantar flexion of Left Foot (PLF), Dorsal flexion of Right Foot (DRF), Plantar flexion of Right Foot (PRF) and Resting in between tasks (Rest). The volunteers were recruited from research colleagues at ESPOL and patients at the Luis Vernaza Hospital in Guayaquil, Ecuador. Each CSV file has 501 rows, of which the first one lists the electrodes from 0 to 15, and the remaining 500 rows correspond to 500 data recorded during the task is performed due to sample rate. In addition, each file has 17 columns, of which the first one indicates the sampling number and the remaining 16 columns represent 16 surface EEG electrodes. As a data recording equipment, the OpenBCI is used in a monopolar setup with a sampling rate of 125 Hz. This work includes statistical measures about the demographic information of all recruited test subjects. Finally, we outline the experimental methodology used to record EEG signals during upper and lower limb task execution. This dataset is called MILimbEEG and contains microvolt (µV) EEG signals acquired during motor and motor imagery tasks. The collected data may facilitate the evaluation of EEG signal detection and classification models dedicated to task recognition.

11.
Front Neurosci ; 17: 1215400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638321

RESUMO

Objective: Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods: 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results: Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion: These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.

12.
Hum Brain Mapp ; 44(17): 5567-5581, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37608682

RESUMO

Upper extremity motor paradigms during spinal cord functional magnetic resonance imaging (fMRI) can provide insight into the functional organization of the cord. Hand-grasping is an important daily function with clinical significance, but previous studies of similar squeezing movements have not reported consistent areas of activity and are limited by sample size and simplistic analysis methods. Here, we study spinal cord fMRI activation using a unimanual isometric hand-grasping task that is calibrated to participant maximum voluntary contraction (MVC). Two task modeling methods were considered: (1) a task regressor derived from an idealized block design (Ideal) and (2) a task regressor based on the recorded force trace normalized to individual MVC (%MVC). Across these two methods, group motor activity was highly lateralized to the hemicord ipsilateral to the side of the task. Activation spanned C5-C8 and was primarily localized to the C7 spinal cord segment. Specific differences in spatial distribution are also observed, such as an increase in C8 and dorsal cord activity when using the %MVC regressor. Furthermore, we explored the impact of data quantity and spatial smoothing on sensitivity to hand-grasp motor task activation. This analysis shows a large increase in number of active voxels associated with the number of fMRI runs, sample size, and spatial smoothing, demonstrating the impact of experimental design choices on motor activation.


Assuntos
Atividade Motora , Medula Espinal , Humanos , Atividade Motora/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Extremidade Superior/fisiologia , Força da Mão
13.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37503125

RESUMO

Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.

14.
Front Neurosci ; 17: 1178800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274191

RESUMO

This study investigated the neurophysiological differences underpinning motor and cognitive skills by measuring the brain activity via functional magnetic resonance imaging. Twenty-five healthy adults (11 women, 25.8 ± 3.5 years of age) participated in the study. We developed three types of tasks, namely, simple motor task (SMT), complex motor task (CMT), and cognitive task (CT), using two-dimensional images of Gomoku, a traditional game known as five in a row. When shown the stimulus, participants were instructed to identify the best spot to win the game and to perform motor imagery of placing the stone for the SMT and CMT but not for the CT. Accordingly, we found significant activation from the CMT minus SMT contrast in the dorsolateral prefrontal cortex, posterior parietal cortex, precentral gyrus, and superior frontal cortex, which reflected increased visuospatial attention, working memory, and motor planning. From the CT minus SMT contrast, we observed significant activation in the left caudate nucleus, right medial prefrontal cortex, and right primary somatosensory cortex, responsible for visuospatial working memory, error detection, and cognitive imagery, respectively. The present findings indicate that adopting a conventional classification of cognitive and motor tasks focused on the extent of decision making and motor control involved in task performance might not be ideal.

15.
Soc Neurosci ; 18(1): 16-27, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37046399

RESUMO

The effect of explicit interoception manipulation on electrophysiological (EEG) patterns concurrent with an interpersonal motor synchronization task with a social purpose was investigated in this study. Thirty healthy individuals executed a task involving behavioral motor synchronization with a social framing in both focus (conceived as the focus on the breath for a specific time interval) and no focus conditions. During the task, a 15 active electrodes electroencephalogram was used to record the following frequency bands (delta, theta, alpha, and beta band) from the frontal, temporo-central, and parieto-occipital regions of interest (ROIs). According to the results, for all the frequency bands significant higher mean values were found in the focus compared to no focus condition in the parieto-occipital ROI. On the whole, the current work conveys that when a motor synchronization task is executed and the person concurrently pays attention to his/her body correlates, EEG brain activity is empowered and boosted in posterior areas at the basis of attention to visceral signals, but also interpersonal action coordination. This evidence could have potentially interesting implications because it suggests the importance of modern breath-work during all conditions that require a social motor joint task, such as physiotherapy exercises or synchronized sports.


Assuntos
Encéfalo , Interocepção , Humanos , Masculino , Feminino , Encéfalo/fisiologia , Eletroencefalografia , Testes Neuropsicológicos , Eletrodos
16.
Biomed Eng Online ; 22(1): 36, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061673

RESUMO

BACKGROUND AND AIMS: Brain-computer interfaces (BCIs) are emerging as a promising tool for upper limb recovery after stroke, and motor tasks are an essential part of BCIs for patient training and control of rehabilitative/assistive BCIs. However, the correlation between brain activation with different levels of motor impairment and motor tasks in BCIs is still not so clear. Thus, we aim to compare the brain activation of different levels of motor impairment in performing the hand grasping and opening tasks in BCIs. METHODS: We instructed stroke patients to perform motor attempts (MA) to grasp and open the affected hand for 30 trials, respectively. During this period, they underwent EEG acquisition and BCIs accuracy recordings. They also received detailed history records and behavioral scale assessments (the Fugl-Meyer assessment of upper limb, FMA-UE). RESULTS: The FMA-UE was negatively correlated with the event-related desynchronization (ERD) of the affected hemisphere during open MA (R = - 0.423, P = 0.009) but not with grasp MA (R = - 0.058, P = 0.733). Then we divided the stroke patients into group 1 (Brunnstrom recovery stages between I to II, n = 19) and group 2 (Brunnstrom recovery stages between III to VI, n = 23). No difference during the grasping task (t = 0.091, P = 0.928), but a significant difference during the open task (t = 2.156, P = 0.037) was found between the two groups on the affected hemisphere. No significant difference was found in the unaffected hemisphere. CONCLUSIONS: The study indicated that brain activation is positively correlated with the hand function of stroke in open-hand tasks. In the grasping task, the patients in the different groups have a similar brain response, while in the open task, mildly injured patients have more brain activation in open the hand than the poor hand function patients.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estudos Transversais , Recuperação de Função Fisiológica/fisiologia , Extremidade Superior , Força da Mão
17.
Brain Res ; 1808: 148334, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931582

RESUMO

Studies have demonstrated dysfunctional connectivity between the cortico-basal ganglia and cerebellar networks in Parkinson's disease (PD). These networks are critical for appropriate motor and cognitive functions, specifically to control gait and postural tasks in PD. Our recent reports have shown abnormal cerebellar oscillations during rest, motor, and cognitive tasks in people with PD compared to healthy individuals, however, the role of cerebellar oscillations in people with PD and freezing of gait (PDFOG+) during lower-limb movements has not been examined. Here, we evaluated cerebellar oscillations using electroencephalography (EEG) electrodes during cue-triggered lower-limb pedaling movement in 13 PDFOG+, 13 PDFOG-, and 13 age-matched healthy subjects. We focused analyses on the mid-cerebellar Cbz as well as lateral cerebellar Cb1 and Cb2 electrodes. PDFOG+ performed the pedaling movement with reduced linear speed and higher variation compared to healthy subjects. PDFOG+ exhibited attenuated theta power during pedaling motor tasks in the mid-cerebellar location compared to PDFOG- or healthy subjects. Cbz theta power was also associated with FOG severity. No significant differences between groups were seen in Cbz beta power. In the lateral cerebellar electrodes, lower theta power was seen between PDFOG+ and healthy subjects. Our cerebellar EEG data demonstrate the occurrence of reduced theta oscillations in PDFOG+ during lower-limb movement and suggest a potential cerebellar biosignature for neurostimulation therapy to improve gait dysfunctions.


Assuntos
Doenças Cerebelares , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Transtornos Neurológicos da Marcha/etiologia , Movimento/fisiologia , Eletroencefalografia , Gânglios da Base
18.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772418

RESUMO

The shoe upper hides the foot motion on the insole, so it has been challenging to measure the non-slip function of socks in a dynamic motor task. The study aimed to propose a method to estimate the non-slip function of socks in an acute maneuver. Participants performed a shuttle run task while wearing three types of socks with different frictional properties. The forces produced by foot movement on the upper during the task were measured by pressure sensors installed at the upper. A force platform was also used to measure the ground reaction force at the outsole and ground. Peak force and impulse values computed by using forces measured by the pressure sensors were significantly different between the sock conditions, while there were no such differences in those values computed by using ground reaction forces measured by a force platform. The results suggested that the non-slip function of socks could be quantified by measuring forces at the foot-upper interface. The method could be an affordable option to measure the non-slip function of socks with minimal effects from skin artifacts and shoe upper integrity.


Assuntos
, Sapatos , Humanos , Fricção , Movimento (Física) , Pele
19.
Exp Brain Res ; 241(3): 905-915, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808464

RESUMO

BACKGROUND: It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals. METHODS: 20 young (22.6 ± 0.87 year) and 28 elderly (74.79 ± 1.37 year) participants performed EF contractions at 20%, 50%, and 80% of maximum voluntary contraction (MVC) while high-density EEG signals were recorded. Both the absolute and relative ESPs were computed for the EEG frequency bands of interest. RESULTS: The MVC force generated by the elderly was foreseeably lower than that of the young participants. Compared to young, the elderly cohort's (1) total ESP was significantly lower for the high (80% MVC) force task; (2) relative ESP in beta band was significantly elevated for the low and moderate (20% MVC and 50% MVC) force tasks; (3) absolute ESP failed to have a positive trend with force for EEG frequency bands of interest; and (4) beta-band relative ESP did not exhibit a significant decrease with increasing force levels. CONCLUSIONS: As opposed to young subjects, the beta-band relative ESP in elderly did not significantly decrease with increasing EF force values. This observation suggests the use of beta-band relative ESP as a potential biomarker for age-related motor control degeneration.


Assuntos
Articulação do Cotovelo , Músculo Esquelético , Humanos , Idoso , Eletromiografia , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Eletroencefalografia , Contração Isométrica/fisiologia
20.
J Neuroeng Rehabil ; 20(1): 5, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36639665

RESUMO

BACKGROUND: Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyography, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC networks (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing data from stroke patients with healthy participants during simple hand tasks. METHODS: EEG (61 sensors) and EMG (8 muscles per arm) were simultaneously recorded from 12 stroke (EXP) and 12 healthy participants (CTRL) during simple hand movements performed with right/left (CTRL) and unaffected/affected hand (EXP, UH/AH). CMC networks were estimated for each movement and their properties were analyzed by means of indices derived ad-hoc from graph theory and compared among groups. RESULTS: Between-group analysis showed that CMC weight of the whole brain network was significantly reduced in patients during AH movements. The network density was increased especially for those connections entailing bilateral non-target muscles. Such reduced muscle-specificity observed in patients was confirmed by muscle degree index (connections per muscle) which indicated a connections' distribution among non-target and contralateral muscles and revealed a higher involvement of proximal muscles in patients. CMC network properties correlated with upper-limb motor impairment as assessed by Fugl-Meyer Assessment and Manual Muscle Test in patients. CONCLUSIONS: High-density CMC networks can capture motor abnormalities in stroke patients during simple hand movements. Correlations with upper limb motor impairment support their use in a BCI-based rehabilitative approach.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Eletroencefalografia , Extremidade Superior , Eletromiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA