Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Adv Protein Chem Struct Biol ; 141: 361-380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960480

RESUMO

Multicellular organisms consist of cells and extracellular matrix (ECM). ECM creates a cellular microenvironment, and cells locally degrade the ECM according to their cellular activity. A major group of enzymes that modify ECM belongs to matrix metalloproteinases (MMPs) and play major roles in various pathophysiological events. ECM degradation by MMPs does not occur in all cellular surroundings but only where it is necessary, and cells achieve this by directionally secreting these proteolytic enzymes. Recent studies have indicated that such enzyme secretion is achieved by targeted vesicle transport along the microtubules, and several kinesin superfamily proteins (KIFs) have been identified as responsible motor proteins involved in the processes. This chapter discusses recent findings of the vesicle transport of MMPs and their roles.


Assuntos
Metaloproteinases da Matriz , Metaloproteinases da Matriz/metabolismo , Humanos , Animais , Cinesinas/metabolismo , Cinesinas/química , Matriz Extracelular/metabolismo , Transporte Biológico , Microtúbulos/metabolismo
2.
Nucl Med Biol ; 136-137: 108930, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38833768

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective diagnostic and therapeutic options. Membrane type 1 matrix metalloproteinase (MT1-MMP) is an attractive biomarker for improving patient selection. This study aimed to develop a theranostic tool using a highly tumour-selective anti-MT1-MMP antibody (LEM2/15) radiolabelled with 89Zr for PET and 177Lu for therapy in a TNBC murine model. METHODS: The LEM2/15 antibody and IgG isotype control were radiolabelled with 89Zr. PET imaging was performed in a TNBC orthotopic mouse model at 1, 2, 4, and 7 days after administration. Tissue biodistribution and pharmacokinetic parameters were analysed and Patlak linearisation was used to calculate the influx rate of irreversible uptake. The TNBC mice were treated with [177Lu]Lu-DOTA-LEM2/15 (single- or 3-dose regimen) or saline. Efficacy of [177Lu]Lu-DOTA-LEM2/15 was evaluated as tumour growth and DNA damage (γH2AX) in MDA 231-BrM2-831 tumours. RESULTS: At 7 days post-injection, PET uptake in tumour xenografts revealed a 1.6-fold and 2.4-fold higher tumour-to-blood ratio for [89Zr]Zr-Df-LEM2/15 in the non-blocked group compared to the blocked and IgG isotype control groups, respectively. Specific uptake of LEM2/15 in TBNC tumours mediated by MT1-MMP-binding was demonstrated by the Patlak linearisation method, providing insights into the potential efficacy of LEM2/15-based treatments. A similar uptake was found for [89Zr]Zr-Df-LEM2/15 and [177Lu]Lu-DOTA-LEM2/15 in tumours 7 days post-injection (6.80 ± 1.31 vs. 5.61 ± 0.66 %ID/g). Tumour doubling time was longer in the [177Lu]Lu-DOTA-LEM2/15 3-dose regimen treated group compared to the control (50 vs. 17 days, respectively). The percentage of cells with γH2AX-foci was higher in tumours treated with [177Lu]Lu-DOTA-LEM2/15 3-dose regimen compared to tumours non-treated or treated with [177Lu]Lu-DOTA-LEM2/15 single-dose (12 % vs. 4-5 %). CONCLUSIONS: The results showed that the 89Zr/177Lu-labelled anti-MT1-MMP mAb (LEM2/15) pair facilitated immune-PET imaging and reduced tumour growth in a preclinical TNBC xenograft model.

3.
J Clin Med ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38541774

RESUMO

Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. This has been demonstrated to be dependent upon the Membrane Type-1 MMP (MT1-MMP). We investigated this relationship in MFS TAA tissue and plasma to discern why unique profiles may exist. Methods: Protein targets were measured in aortic tissue and plasma from MFS patients with TAAs and were compared to healthy controls. The abundance and location of MT1-MMP was modified in aortic fibroblasts and secreted EMMPRIN was measured in conditioned culture media. Results: EMMPRIN levels were elevated in MFS TAA tissue but reduced in plasma, compared to the controls. Tissue EMMPRIN elevation did not induce MMP-3, MMP-8, or TIMP-1 expression, while MT1-MMP and TIMP-2 were elevated. MMP-2 and MMP-9 were reduced in TAA tissue but increased in plasma. In aortic fibroblasts, EMMPRIN secretion required the internalization of MT1-MMP. Conclusions: In MFS, impaired EMMPRIN secretion likely contributes to higher tissue levels, influenced by MT1-MMP cellular localization. Low EMMPRIN levels, in conjunction with other MMP analytes, distinguished MFS TAAs from controls, suggesting diagnostic potential.

4.
J Neuroinflammation ; 21(1): 57, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388415

RESUMO

BACKGROUND: Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS: Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS: We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1ß production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS: Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1ß production to achieve positive promotion of NP.


Assuntos
Astrócitos , Neuralgia , Animais , Ratos , Astrócitos/metabolismo , Constrição , Metaloproteinase 14 da Matriz , Metaloproteinase 2 da Matriz , Neuralgia/etiologia , Neuralgia/metabolismo , Ratos Sprague-Dawley
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367902

RESUMO

Obesity is one of the predominant risk factors for type 2 diabetes. Despite all the modern advances in medicine, an effective drug treatment for obesity without overt side effects has not yet been found. The discovery of growth and differentiation factor 15 (GDF15), an appetite-regulating hormone, created hopes for the treatment of obesity. However, an insufficient understanding of the physiological regulation of GDF15 has been a major obstacle to mitigating GDF15-centric treatment of obesity. Our recent studies revealed how a series of proteolytic events predominantly mediated by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14), a key cell-surface metalloproteinase involved in extracellular remodeling, contribute to the pathogenesis of metabolic disorders, including obesity and diabetes. The MT1-MMP-mediated cleavage of the GDNF family receptor-α-like (GFRAL), a key neuronal receptor of GDF15, controls the satiety center in the hindbrain, thereby regulating non-homeostatic appetite and bodyweight changes. Furthermore, increased activation of MT1-MMP does not only lead to increased risk of obesity, but also causes age-associated insulin resistance by cleaving Insulin Receptor in major metabolic tissues. Importantly, inhibition of MT1-MMP effectively protects against obesity and diabetes, revealing the therapeutic potential of targeting MT1-MMP for the management of metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Obesidade , Humanos , Fator 15 de Diferenciação de Crescimento/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Obesidade/metabolismo
6.
Biomedicines ; 11(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37893104

RESUMO

BACKGROUND: Membrane type-matrix metalloproteinases (MT-MMPs) are a subgroup of the matrix metalloproteinases (MMPs) family and are key molecules in the degradation of the extracellular matrix. Membrane type-1 matrix metalloproteinase (MT1-MMP, MMP14) is often deregulated in different cancer tissues and body fluids of human cancer patients; however, MT1-MMP levels in endometriosis and adenomyosis patients are currently unknown. MATERIALS AND METHODS: Tissue samples from patients with and without endometriosis or adenomyosis were analyzed with immunohistochemistry for the localization of MT1-MMP. Serum and endocervical mucus samples from patients with and without endometriosis or adenomyosis were investigated with MT1-MMP ELISAs. RESULTS: MT1-MMP was localized preferentially in the glands of eutopic and ectopic endometrium. MT1-MMP protein levels are significantly reduced in ovarian endometriosis (HSCORE = 31) versus eutopic endometrium (HSCORE = 91) and adenomyosis (HSCORE = 149), but significantly increased in adenomyosis (HSCORE = 149) compared to eutopic endometrium (HSCORE = 91). Similarly, analysis of the levels of MT1-MMP using enzyme-linked immune assays (ELISAs) demonstrated a significant increase in the concentrations of MT1-MMP in the serum of endometriosis patients (1.3 ± 0.8) versus controls (0.7 ± 0.2), but not in the endocervical mucus. Furthermore, MT1-MMP levels in the endocervical mucus of patients with endometriosis were notably reduced in patients using contraception (3.2 ± 0.4) versus those without contraception (3.8 ± 0.2). CONCLUSIONS: Taken together, our findings showed an opposite regulation of MT1-MMP in the tissue of ovarian endometriosis and adenomyosis compared to eutopic endometrium without endometriosis but increased serum levels in patients with endometriosis.

7.
Cell Rep ; 42(10): 113302, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862167

RESUMO

During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.


Assuntos
Neoplasias da Mama , Podossomos , Humanos , Feminino , Podossomos/metabolismo , Linhagem Celular Tumoral , Peptídeo Hidrolases/metabolismo , Invasividade Neoplásica/patologia , Neoplasias da Mama/patologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Melanoma Maligno Cutâneo
8.
Cells ; 12(17)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681919

RESUMO

Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.


Assuntos
Metaloproteinase 14 da Matriz , Inibidor Tecidual de Metaloproteinase-2 , Membrana Celular , Anticorpos , Colágeno Tipo I , Colágeno Tipo III
9.
FASEB J ; 37(8): e23097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37440280

RESUMO

Colorectal cancer (CRC) is a high prevalence adenocarcinoma with progressive increases in metastasis-related mortality, but the mechanisms governing the extracellular matrix (ECM) degradation important for metastasis in CRC are not well-defined. We investigated a functional relationship between vimentin (Vim) and myosin 10 (Myo10), and whether this relationship is associated with cancer progression. We tested the hypothesis that Vim regulates the aggregation of Myo10 at the tips of cell extensions, which increases membrane-type 1 matrix metalloproteinase (MT1-MMP)-associated local collagen proteolysis and ECM degradation. Analysis of CRC samples revealed colocalization of Vim with Myo10 and MT1-MMP in cell extensions adjacent to sites of collagen degradation, suggesting an association with local cell invasion. We analyzed cultured CRC cells and fibroblasts and found that Vim accelerates aggregation of Myo10 at cell tips, which increases the cell extension rate. Vim stabilizes the interaction of Myo10 with MT1-MMP, which in turn increases collagenolysis. Vim depletion reduced the aggregation of Myo10 at the cell extension tips and MT1-MMP-dependent collagenolysis. We propose that Vim interacts with Myo10, which in turn associates with MT1-MMP to facilitate the transport of these molecules to the termini of cell extensions and there enhance cancer invasion of soft connective tissues.


Assuntos
Neoplasias Colorretais , Metaloproteinase 14 da Matriz , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Vimentina/metabolismo , Colágeno , Miosinas
10.
Mol Cell Proteomics ; 22(6): 100566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169079

RESUMO

The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.


Assuntos
Hemopexina , Metaloproteinase 14 da Matriz , Membrana Celular/metabolismo , Hemopexina/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Peptídeos/metabolismo , Proteólise , Humanos
11.
Exp Neurol ; 365: 114410, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37075968

RESUMO

Enolase-phosphatase 1 (ENOPH1) is a newly identified enzyme associated with stress responses and cell proliferation. Our previous study found that ENOPH1 mediates cerebral microvascular endothelial cell apoptosis under cerebral ischemia conditions. In this study, we systematically provide mechanistic insights into the regulation of ENOPH1 in blood-brain barrier (BBB) dysfuction induced by early ischemia. ENOPH1 knockout mice (ENOPH1 KO) and wild type (WT) mice were exposed to transient middle cerebral artery occlusion (tMCAO) for 90 min followed by 3 h of reperfusion in vivo, and brain microvascular endothelial cell lines (bEnd.3 cells) were exposed to oxygen-glucose deprivation (OGD) in vitro. BEnd.3 cells were transfected with ENOPH1 shRNA to knockdown ENOPH1 expression. Brain ischemic damage and nerve function was assessed with 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and neurological scores. BBB permeability and tight junction (TJ) protein and adherens junction (AJ) proteins expression were analyzed by FITC-dextran staining, western blotting and coimmunofluorescence. The MMP-2/9 activity was analyzed by gelatin zymography. Differential protein expression was assessed by quantitative proteomics. The interaction between ADI1 and MT1-MMP was measured by coimmunoprecipitation assay and coimmunofluorescence. Knockout of ENOPH1 ameliorated cerebral ischemic injury, decreased BBB permeability, inhibited the activity of MMP-2/9, upregulated the expression of TJ/AJ proteins and reversed extracellular matrix destruction after ischemia in vivo. Mechanistic studies have shown that ENOPH1 silencing enhanced the interaction between ADI1 and MT1-MMP by promoting the nuclear translocation of ADI1 to inhibit MT1-MMP in bEnd.3 cells after OGD and decreasing the expression of Tnc and Fn1 to inhibit ECM degradation. Our results reveal that ENOPH1 increases the activity of MMP-2/9, then promotes TJ protein and extracellular matrix degradation, and eventually destroys the stability of the BBB. Therefore, ENOPH1 is a new therapeutic target for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/metabolismo , Matriz Extracelular/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfopiruvato Hidratase/metabolismo , Traumatismo por Reperfusão/metabolismo
12.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982142

RESUMO

MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.


Assuntos
Metaloproteinase 14 da Matriz , Transdução de Sinais , Metaloproteinase 14 da Matriz/metabolismo , Adesão Celular , Movimento Celular
13.
Biomedicines ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831085

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a crucial role in cells adapting to a low-oxygen environment by facilitating a switch from oxygen-dependent ATP production to glycolysis. Mediated by membrane type-1 matrix metalloproteinase (MT1-MMP) expression, Munc-18-1 interacting protein 3 (Mint3) binds to the factor inhibiting HIF-1 (FIH-1) and inhibits its suppressive effect, leading to HIF-1α activation. Defects in Mint3 generally lead to improved acute inflammation, which is regulated by HIF-1α and subsequent glycolysis, as well as the suppression of the proliferation and metastasis of cancer cells directly through its expression in cancer cells and indirectly through its expression in macrophages or fibroblasts associated with cancer. Mint3 in inflammatory monocytes enhances the chemotaxis into metastatic sites and the production of vascular endothelial growth factors, which leads to the expression of E-selectin at the metastatic sites and the extravasation of cancer cells. Fibroblasts express L1 cell adhesion molecules in a Mint3-dependent manner and enhance integrin-mediated cancer progression. In pancreatic cancer cells, Mint3 directly promotes cancer progression. Naphthofluorescein, a Mint3 inhibitor, can disrupt the interaction between FIH-1 and Mint3 and potently suppress Mint3-mediated inflammation, cancer progression, and metastasis without causing marked adverse effects. In this review, we will introduce the potential of Mint3 as a therapeutic target for inflammatory diseases and cancers.

14.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768503

RESUMO

A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.


Assuntos
Metaloproteinase 14 da Matriz , Metaloendopeptidases , Colagenases , Metaloproteinases da Matriz , Metaloproteinases da Matriz Associadas à Membrana , Metaloendopeptidases/metabolismo , Proteínas , Especificidade por Substrato
15.
FEBS J ; 290(1): 76-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36102354

RESUMO

Proteases are organised in interconnected networks, together forming the protease web whose disturbance can have detrimental consequences for tissue homeostasis and response to environmental insults. Membrane-anchored sheddases are proteases that themselves can be released into the pericellular space by ectodomain shedding. Werny et al. have uncovered unexpected promiscuity in ectodomain shedding of meprin ß, a metalloprotease with critical functions in inflammation and fibrosis. These findings suggest new links within complex proteolytic networks like the epidermal protease network with potential implications for skin homeostasis, inflammation and response to injury. Comment on: https://doi.org/10.1111/febs.16586.


Assuntos
Metaloendopeptidases , Peptídeo Hidrolases , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Metaloproteases , Proteólise
16.
FEBS J ; 290(1): 93-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944080

RESUMO

Membrane-type-I matrix metalloproteinase (MT1-MMP) is one of six human membrane-bound MMPs and is responsible for extracellular matrix remodelling by degrading several substrates like fibrillar collagens, including types I-III, or fibronectin. Moreover, MT1-MMP was described as a key player in cancer progression and it is involved in various inflammatory processes, as well as in the pathogenesis of Alzheimer's disease (AD). The membrane-tethered metalloprotease meprin ß as well as a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17 are also associated with these diseases. Interestingly, meprin ß, ADAM10/17 and MT1-MMP also have a shared substrate pool including the interleukin-6 receptor and the amyloid precursor protein. We investigated the interaction of these proteases, focusing on a possible connection between MT1-MMP and meprin ß, to elucidate the potential mutual regulations of both enzymes. Herein, we show that besides ADAM10/17, MT1-MMP is also able to shed meprin ß from the plasma membrane, leading to the release of soluble meprin ß. Mass spectrometry-based cleavage site analysis revealed that the cleavage of meprin ß by all three proteases occurs between Pro602 and Ser603 , N-terminal of the EGF-like domain. Furthermore, only inactive human pro-meprin ß is shed by MT1-MMP, which is again in accordance with the shedding capability observed for ADAM10/17. Vice versa, meprin ß also appears to shed MT1-MMP, indicating a complex regulatory network. Further studies will elucidate this well-orchestrated proteolytic web under distinct conditions in health and disease and will possibly show whether the loss of one of the above-mentioned sheddases can be compensated by the other enzymes.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Metaloproteinase 14 da Matriz , Proteínas de Membrana , Humanos , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
17.
Cancer Sci ; 114(2): 348-356, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336966

RESUMO

Strategies to develop cancer therapies using inhibitors that target matrix metalloproteinases (MMPs), particularly membrane type-1 MMP (MT1-MMP), have failed. This is predominantly attributed to the specificity of MMP inhibitors and numerous functions of MMPs; therefore, targeting substrates with such broad specificity can lead to off-target effects. Thus, new drug development for cancer therapeutics should focus on the ability of MT1-MMP to break down substrates, such as functional cell membrane proteins, to regulate the functions of these proteins that promote tumor malignancy. In this review, we discuss the mechanism by which proteolysis of cell surface proteins by MT1-MMP promotes progression of malignant tumor cells. In addition, we discuss the two protein fragments generated by limited cleavage of erythropoietin-producing hepatoma receptor tyrosine kinase A2 (EphA2-NF, -CF), which represent a promising basis for developing new cancer therapies and diagnostic techniques.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteólise , Proteínas de Membrana/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloendopeptidases/metabolismo
18.
Front Med (Lausanne) ; 9: 1058455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507540

RESUMO

Triple-negative breast cancer (TNBC) is characterized by aggressiveness and high rates of metastasis. The identification of relevant biomarkers is crucial to improve outcomes for TNBC patients. Membrane type 1-matrix metalloproteinase (MT1-MMP) could be a good candidate because its expression has been reported to correlate with tumor malignancy, progression and metastasis. Moreover, single-domain variable regions (VHHs or Nanobodies) derived from camelid heavy-chain-only antibodies have demonstrated improvements in tissue penetration and blood clearance, important characteristics for cancer imaging. Here, we have developed a nanobody-based PET imaging strategy for TNBC detection that targets MT1-MMP. A llama-derived library was screened against the catalytic domain of MT1-MMP and a panel of specific nanobodies were identified. After a deep characterization, two nanobodies were selected to be labeled with gallium-68 (68Ga). ImmunoPET imaging with both ([68Ga]Ga-NOTA-3TPA14 and [68Ga]Ga-NOTA-3CMP75) in a TNBC mouse model showed precise tumor-targeting capacity in vivo with high signal-to-background ratios. (68Ga)Ga-NOTA-3CMP75 exhibited higher tumor uptake compared to (68Ga)Ga-NOTA-3TPA14. Furthermore, imaging data correlated perfectly with the immunohistochemistry staining results. In conclusion, we found a promising candidate for nanobody-based PET imaging to be further investigated as a diagnostic tool in TNBC.

19.
Iran J Pathol ; 17(4): 480-490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532641

RESUMO

Background & Objective: Invasive breast carcinoma of no special type (IBC-NST) is the most common type of breast cancer, which mainly causes axillary lymph-node metastasis (ALNM). Building on our previous research, we wanted to explore the optimal combination of AKT2, CD44v6, and MT1-MMP for the ALNM prediction. Methods: The presence or absence of ALNM was used to separate 46 paraffin blocks containing IBC-NST primary tumors into two groups. Age, tumor grade, tumor size, receptor status (ER, PR, HER2, Ki-67, TOP2A), and test biomarker expression were evaluated. Biomarker expressions were assessed by IHC staining and categorized according to their respective cut-offs from our previous study, while other data were collected from archives. Data was gathered and analyzed using univariate, multivariate, and AUROC models. Results: The expression of CD44v6 (OR: 12.77, 95% CI: 2.18-87.12, P=0.005) was identified as the independent variable for ALNM. Meanwhile, AKT2 expression (OR: 3.22, 95% CI: 0.36-22.41, P=0.237) and MT1-MMP expression (OR: 5.35, 95% CI: 0.83-34.54, P=0.078) did not demonstrate a statistically significant independent association in respect to ALNM. Combining AKT2 and MT1-MMP on CD44v6 increased overall accuracy by 4% compared to CD44v6 alone (AUROC 0.89 vs. 0.85). Conclusion: The combined usage of AKT2, CD44v6, and MT1-MMP revealed no significant change compared to CD44v6 alone. Due to the cost and practicality, we propose using CD44v6 as a predictor biomarker of ALNM in IBC-NST.

20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430705

RESUMO

Modulations in cell surface receptor ectodomain proteolytic shedding impact on receptor function and cancer biomarker expression. As such, heavily pursued therapeutic avenues have exploited LDL receptor-related protein-1 (LRP-1)-mediated capacity in internalizing Angiopep-2 (An2), a brain-penetrating peptide that allows An2-drug conjugates to cross the blood-brain tumor barrier (BBTB). Given that LRP-1 is proteolytically shed from the cell surface through matrix metalloproteinase (MMP) activity, the balance between MMP expression/function and LRP-1-mediated An2 internalization is unknown. In this study, we found that membrane type-1 (MT1)-MMP expression increased from grade 1 to 4 brain tumors, while that of LRP-1 decreased inversely. MMP pharmacological inhibitors such as Ilomastat, Doxycycline and Actinonin increased in vitro An2 internalization by up to 2.5 fold within a human grade IV-derived U87 glioblastoma cell model. Transient siRNA-mediated MT1-MMP gene silencing resulted in increased basal An2 cell surface binding and intracellular uptake, while recombinant MT1-MMP overexpression reduced both cell surface LRP-1 expression as well as An2 internalization. The addition of Ilomastat to cells overexpressing recombinant MT1-MMP restored LRP-1 expression at the cell surface and An2 uptake to levels comparable to those observed in control cells. Collectively, our data suggest that MT1-MMP expression status dictates An2-mediated internalization processes in part by regulating cell surface LRP-1 functions. Such evidence prompts preclinical evaluations of combined MMP inhibitors/An2-drug conjugate administration to potentially increase the treatment of high-MT1-MMP-expressing brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Metaloproteinase 14 da Matriz , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA