Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Curr Biol ; 32(1): 256-263.e4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34818519

RESUMO

Cell-cycle progression is driven by the phosphorylation of cyclin-dependent kinase (Cdk) substrates.1-3 The order of substrate phosphorylation depends in part on the general rise in Cdk activity during the cell cycle,4-7 together with variations in substrate docking to sites on associated cyclin and Cks subunits.3,6,8-10 Many substrates are modified at multiple sites to provide more complex regulation.10-14 Here, we describe an elegant regulatory circuit based on multisite phosphorylation of Ndd1, a transcriptional co-activator of budding yeast genes required for mitotic progression.11,12 As cells enter mitosis, Ndd1 phosphorylation by Cdk1 is known to promote mitotic cyclin (CLB2) gene transcription, resulting in positive feedback.13-16 Consistent with these findings, we show that low Cdk1 activity promotes CLB2 expression at mitotic entry. We also find, however, that when high Cdk1 activity accumulates in a mitotic arrest, CLB2 expression is inhibited. Inhibition is accompanied by Ndd1 degradation, and we present evidence that degradation is triggered by multisite Ndd1 phosphorylation by high mitotic Cdk1-Clb2 activity. Complete Ndd1 phosphorylation by Clb2-Cdk1-Cks1 requires the phosphothreonine-binding site of Cks1, as well as a recently identified phosphate-binding pocket on the cyclin Clb2.17 We therefore propose that initial phosphorylation by Cdk1 primes Ndd1 for delayed secondary phosphorylation at suboptimal sites that promote degradation. Together, our results suggest that rising levels of mitotic Cdk1 activity act at multiple phosphorylation sites on Ndd1, first triggering rapid positive feedback and then promoting delayed negative feedback, resulting in a pulse of mitotic gene expression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclinas/genética , Retroalimentação , Mitose , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
2.
Methods Mol Biol ; 2141: 779-792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696389

RESUMO

Phos-tagTM SDS-PAGE is a method that enables electrophoretic separation of proteins based on their phosphorylation status. With Phos-tagTM SDS-PAGE, it is possible to discriminate between different phosphoforms of proteins based on their phosphorylation level and the number of phosphorylated sites, and to determine the stoichiometry of different phosphorylation products. Phos-tagTM SDS-PAGE is useful for analyzing disordered proteins with multiple phosphorylation sites and can be used for any of the downstream applications used in combination with conventional SDS-PAGE, for example, Western blotting and mass-spectrometry. To obtain the best results with Phos-tagTM SDS-PAGE, however, it is often necessary to optimize the gel composition. Depending on the molecular weight and number of phosphoryl groups added to the protein, different gel composition or running conditions should be used. Here, we provide protocols for Mn2+- and Zn2+-Phos-tagTM SDS-PAGE and give examples of how disordered proteins with different characteristics behave in gels with various Phos-tag concentrations.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Proteínas Intrinsicamente Desordenadas/análise , Processamento de Proteína Pós-Traducional , Acrilamida , Acrilamidas , Autorradiografia/métodos , Western Blotting/métodos , Soluções Tampão , Eletroforese em Gel de Poliacrilamida/instrumentação , Géis , Proteínas Intrinsicamente Desordenadas/química , Manganês , Peso Molecular , Fosfoproteínas/análise , Fosfoproteínas/química , Fosforilação , Corantes de Rosanilina , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Coloração e Rotulagem/métodos , Zinco
3.
J Neurochem ; 152(1): 29-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529487

RESUMO

Multisite phosphorylation and structural flexibility allow for complex regulation of proteins through cellular signaling. Tyrosine hydroxylase (TH), a key enzyme of catecholamine synthesis, is regulated by multiple neuronal signaling pathways through phosphorylation at serine 19 (Ser19), serine 31 (Ser31), and serine 40 (Ser40) located in the flexible, far N-terminal region of the regulatory domain. Phosphorylated Ser19 (pSer19) provides a binding site for 14-3-3 proteins, a family of multi-target binding adaptor proteins. We hypothesized that pSer19 and 14-3-3 binding can regulate access to the Ser31 and Ser40 sites and modulate the dynamics of their phosphorylation state. To avoid complications from upstream signal interactions and have good control of TH-phosphorylation and 14-3-3 binding stoichiometry, we used purified recombinant human TH and 14-3-3 dimer types. We found that pSer19 strongly stimulated Ser31 phosphorylation (4.6-fold), but inhibited pSer31 dephosphorylation (3.4-fold). Binding of 14-3-3ζ counteracted the stimulatory effect of pSer19 on phosphorylation at Ser31, but amplified the effect on its dephosphorylation. In contrast, phosphorylation at Ser19 had moderate effect on pSer40 dephosphorylation, but 14-3-3ζ binding inhibited dephosphorylation, an effect that was consistent across different homo- and heterodimeric 14-3-3s. Additional phosphorylation of Ser31 or Ser40 had little impact on the binding affinity of pSer19 TH to 14-3-3s. Mathematical modeling was performed to elucidate possible physiological implications of these observations. We propose a role of Ser19 and 14-3-3 proteins as modulators of TH phosphorylation in response to neuronal co-signaling events. These mechanisms add to our understanding of the multifaceted roles of phosphorylation and adaptor proteins in cellular signaling.


Assuntos
Proteínas 14-3-3/metabolismo , Fosforilação/fisiologia , Serina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3/farmacologia , Animais , Humanos , Modelos Teóricos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Recombinantes
4.
J Exp Bot ; 70(18): 4919-4930, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31087098

RESUMO

In plants, nutrient transporters require tight regulation to ensure optimal uptake in complex environments. The activities of many nutrient transporters are post-translationally regulated by reversible phosphorylation, allowing rapid adaptation to variable environmental conditions. Here, we show that the Arabidopsis root epidermis-expressed ammonium transporter AtAMT1;3 was dynamically (de-)phosphorylated at multiple sites in the cytosolic C-terminal region (CTR) responding to ammonium and nitrate signals. Under ammonium resupply rapid phosphorylation of a Thr residue (T464) in the conserved part of the CTR (CTRC) effectively inhibited AtAMT1;3-dependent NH4+ uptake. Moreover, phosphorylation of Thr (T494), one of three phosphorylation sites in the non-conserved part of the CTR (CRTNC), moderately decreased the NH4+ transport activity of AtAMT1;3, as deduced from functional analysis of phospho-mimic mutants in yeast, oocytes, and transgenic Arabidopsis. Double phospho-mutants indicated a role of T494 in fine-tuning the NH4+ transport activity when T464 was non-phosphorylated. Transient dephosphorylation of T494 with nitrate resupply closely paralleled a transient increase in ammonium uptake. These results suggest that T464 phosphorylation at the CTRC acts as a prime switch to prevent excess ammonium influx, while T494 phosphorylation at the CTRNC fine tunes ammonium uptake in response to nitrate. This provides a sophisticated regulatory mechanism for plant ammonium transporters to achieve optimal ammonium uptake in response to various nitrogen forms.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Fosforilação
5.
Bull Math Biol ; 81(6): 1829-1852, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30834485

RESUMO

This work investigates the emergence of oscillations in one of the simplest cellular signaling networks exhibiting oscillations, namely the dual-site phosphorylation and dephosphorylation network (futile cycle), in which the mechanism for phosphorylation is processive, while the one for dephosphorylation is distributive (or vice versa). The fact that this network yields oscillations was shown recently by Suwanmajo and Krishnan. Our results, which significantly extend their analyses, are as follows. First, in the three-dimensional space of total amounts, the border between systems with a stable versus unstable steady state is a surface defined by the vanishing of a single Hurwitz determinant. Second, this surface consists generically of simple Hopf bifurcations. Next, simulations suggest that when the steady state is unstable, oscillations are the norm. Finally, the emergence of oscillations via a Hopf bifurcation is enabled by the catalytic and association constants of the distributive part of the mechanism; if these rate constants satisfy two inequalities, then the system generically admits a Hopf bifurcation. Our proofs are enabled by the Routh-Hurwitz criterion, a Hopf bifurcation criterion due to Yang, and a monomial parametrization of steady states.


Assuntos
Redes e Vias Metabólicas , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Humanos , Cinética , Conceitos Matemáticos , Fosforilação
6.
J Proteome Res ; 17(9): 3050-3060, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063138

RESUMO

The regulation of protein function through phosphorylation is often dominated by allosteric interactions and conformational changes. However, alternative mechanisms involving electrostatic interactions also regulate protein function. In particular, phosphorylation of clusters of Ser/Thr residues can affect protein-plasma membrane/chromatin interactions by electrostatic interactions between phosphosites and phospholipids or histones. Currently, only a few examples of such mechanisms are reported, primarily because of the difficulties of detecting highly phosphorylated proteins and peptides, due in part to the low ionization efficiency and fragmentation yield of multiphosphorylated peptides in mass spectrometry when using positive ion mode detection. This difficulty in detection has resulted in under-reporting of such modified regions, which can be thought of as phosphoproteomic dark matter. Here, we present a novel approach that enriches for multisite-phosphorylated peptides that until now remained inaccessible by conventional phosphoproteomics. Our technique enables the identification of multisite-phosphorylated regions on more than 300 proteins in both yeast and human cells and can be used to profile changes in multisite phosphorylation upon cell stimulation. We further characterize the role of multisite phosphorylation for Ste20 in the yeast mating pheromone response. Mutagenesis experiments confirmed that multisite phosphorylation of Ser/Thr-rich regions plays an important role in the regulation of Ste20 activity during mating pheromone signaling. The ability to detect protein multisite phosphorylation opens new avenues to explore phosphoproteomic dark matter and to study Ser-rich proteins that interact with binding partners through charge pairing mechanisms.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatase Alcalina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cromatografia Líquida , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , Peptídeos/análise , Peptídeos/genética , Feromônios/farmacologia , Fosfoproteínas/genética , Fosforilação , Domínios Proteicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina , Transdução de Sinais , Eletricidade Estática , Espectrometria de Massas em Tandem
7.
Elife ; 72018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29999490

RESUMO

Metazoan development depends on tightly regulated gene expression programs that instruct progenitor cells to adopt specialized fates. Recent work found that posttranslational modifications, such as monoubiquitylation, can determine cell fate also independently of effects on transcription, yet how monoubiquitylation is implemented during development is poorly understood. Here, we have identified a regulatory circuit that controls monoubiquitylation-dependent neural crest specification by the E3 ligase CUL3 and its substrate adaptor KBTBD8. We found that CUL3KBTBD8 monoubiquitylates its essential targets only after these have been phosphorylated in multiple motifs by CK2, a kinase whose levels gradually increase during embryogenesis. Its dependency on multisite phosphorylation allows CUL3KBTBD8 to convert the slow rise in embryonic CK2 into decisive recognition of ubiquitylation substrates, which in turn is essential for neural crest specification. We conclude that multisite dependency of an E3 ligase provides a powerful mechanism for switch-like cell fate transitions controlled by monoubiquitylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Proteínas Culina/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Ubiquitinação , Caseína Quinase II/metabolismo , Células Cultivadas , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional
8.
Math Biosci ; 301: 159-166, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738759

RESUMO

In this paper, we consider a mixed mechanism of a n-site phosphorylation system in which the mechanism of phosphorylation is distributive and that of dephosphorylation is processive. It is assumed that the concentrations of the substrates are much higher than those of the enzymes and their intermediate complexes. This assumption enables us to reduce the system using the steady-state approach to a Michaelis-Menten approximation of the system. It is proved that the resulting system of nonlinear ordinary differential equations admits a unique positive equilibrium in every positive stoichiometric compatibility class using the theory of quadratic equations. We then consider two special cases. In the first case, we assume that the Michaelis constants associated with the different substrates in the phosphorylation reactions are equal and construct a Lyapunov function to prove asymptotic stability of the system. In the second case, we assume that there are just two sites of phosphorylation and dephoshorylation and prove that the resulting system is asymptotically stable using Poincare´ Bendixson theorem.


Assuntos
Modelos Biológicos , Fosfotransferases/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Cinética , Conceitos Matemáticos , Dinâmica não Linear , Fosforilação , Proteínas/metabolismo , Especificidade por Substrato
9.
J Math Biol ; 74(3): 709-726, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27356890

RESUMO

In this paper, we prove the global asymptotic stability of a class of mass action futile cycle networks which includes a model of processive multisite phosphorylation networks. The proof consists of two parts. In the first part, we prove that there is a unique equilibrium in every positive compatibility class. In the second part, we make use of a piecewise linear in rates Lyapunov function in order to prove the global asymptotic stability of the unique equilibrium corresponding to a given initial concentration vector. The main novelty of the paper is the use of a simple algebraic approach based on the intermediate value property of continuous functions in order to prove the uniqueness of equilibrium in every positive compatibility class.


Assuntos
Modelos Teóricos , Fosforilação
10.
Genes Dev ; 29(4): 426-39, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691469

RESUMO

The initiation of chromosome morphogenesis marks the beginning of mitosis in all eukaryotic cells. Although many effectors of chromatin compaction have been reported, the nature and design of the essential trigger for global chromosome assembly remain unknown. Here we reveal the identity of the core mechanism responsible for chromosome morphogenesis in early mitosis. We show that the unique sensitivity of the chromosome condensation machinery for the kinase activity of Cdk1 acts as a major driving force for the compaction of chromatin at mitotic entry. This sensitivity is imparted by multisite phosphorylation of a conserved chromatin-binding sensor, the Smc4 protein. The multisite phosphorylation of this sensor integrates the activation state of Cdk1 with the dynamic binding of the condensation machinery to chromatin. Abrogation of this event leads to chromosome segregation defects and lethality, while moderate reduction reveals the existence of a novel chromatin transition state specific to mitosis, the intertwist configuration. Collectively, our results identify the mechanistic basis governing chromosome morphogenesis in early mitosis and how distinct chromatin compaction states can be established via specific thresholds of Cdk1 kinase activity.


Assuntos
Divisão Celular/genética , Cromossomos Fúngicos/genética , Quinases Ciclina-Dependentes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Genes de Troca/fisiologia , Mitose , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Proteomics ; 118: 49-62, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25449829

RESUMO

Although multiple phosphorylation sites are often clustered in substrates, the mechanism of phosphorylation within clusters has not been systematically investigated. Intriguingly, in addition to acidic residues, protein kinase CK2 can use phosphoserine residues as consensus determinants suggesting that CK2 may act in concert with other kinases. We used a peptide array approach to outline optimal consensus sequences for hierarchical phosphorylation by CK2, both in the context of processive, multisite phosphorylation, and in concert with a priming proline-directed kinase. Results suggest that hierarchical phosphorylation involving CK2 requires precise positioning of either multiple phosphodeterminant residues or specific combinations of canonical determinants and phosphodeterminants, and can be as enzymatically favorable as canonical CK2 phosphorylation. Over 1600 human proteins contain at least one CK2 hierarchical consensus motif, and ~20% of these motifs contain at least one reported in vivo phosphorylation site. These motifs occur non-randomly in the human proteome, with significant enrichment in proteins controlling specific cellular processes. Taken together, our results provide strong in vitro evidence that hierarchical phosphorylation may contribute to the regulation of crucial biological processes. In addition, the results suggest a mechanism by which CK2, a constitutively active kinase, can be a regulatory participant in cellular processes. BIOLOGICAL SIGNIFICANCE: Phosphorylation is a crucial regulatory mechanism governing cellular signal transduction pathways, and despite the large number of identified sites to date, most mechanistic studies remain focused on individual phosphorylation sites. This study is the first to systematically determine specific consensus sequences for hierarchical phosphorylation events. The results indicate that individual phosphorylation sites should not be studied in isolation, and that larger, multisite phosphorylation motifs may have profound impact on cellular signaling. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Assuntos
Caseína Quinase II/química , Proteoma/química , Motivos de Aminoácidos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Humanos , Fosforilação , Proteoma/genética , Proteoma/metabolismo
12.
Clin Exp Pharmacol Physiol ; 41(11): 891-901, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132161

RESUMO

Activated protein kinase Cδ (PKCδ) associated with cardiac hypertrophy moves from the cytoplasm to the mitochondria and subsequently triggers the apoptotic signalling pathway. The underlying mechanisms remain unknown. The aim of the present study was to investigate whether mitochondrial translocation of PKCδ phosphorylates multiple sites of Bcl-2, resulting in an imbalance between Bcl-2 and Bak or Bax, thus enhancing the susceptibility of hypertrophic cardiomyocytes to angiotensin II (AngII)-induced apoptosis. Chronic pressure overload was induced by transverse aortic constriction (TAC) in rats. The apoptotic rate increased in hypertrophied cardiomyocytes. In AngII-treated hearts (10 nmol/L, 60 min), there was an increase in the number of TERMINAL deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL)-positive cells; PKCδ inhibition with 500 nmol/L δV1-1 for 60 min prevented the AngII-induced increase in apoptosis. In the hypertrophied myocardium, PKCδ expression increased, whereas that of Bcl-2 decreased compared with the synchronous control. Treatment of hearts with 10 nmol/L AngII for 60 min activated PKCδ and induced translocation of PKCδ to the mitochondria, where activated PKCδ facilitated the phosphorylation of Bcl-2 at serine-87 and serine-70 sites. The multisite phosphorylated Bcl-2 was released from the mitochondria, and exhibited reduced affinity for Bak and Bax. The imbalance between Bcl-2 and Bak/Bax induced the release of mitochondrial cytochrome c and then activated the caspase 3 apoptotic pathway during AngII stimulation (10 nmol/L, 60 min) of hypertrophied cardiomyocytes. Inhibition of PKCδ reduced these effects of AngII. The results suggest that PKCδ can counteract the anti-apoptotic effect of Bcl-2 and may promote cardiomyocyte apoptosis through multisite phosphorylation of Bcl-2 in hypertrophied cardiomyocytes.


Assuntos
Apoptose , Cardiomegalia/patologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/patologia , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Masculino , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína Quinase C-delta/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Sprague-Dawley
13.
Front Genet ; 5: 270, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147561

RESUMO

Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through its reversibility and fast kinetics. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein's structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation can be used to regulate and modulate protein-protein binding. Losses of phosphorylation sites, as a result of disease mutations, might disrupt protein binding and deregulate signal transduction. In this paper we focus on the effects of phosphorylation on protein stability, dynamics, and binding. We describe several physico-chemical mechanisms of protein regulation through phosphorylation and pay particular attention to phosphorylation in protein complexes and phosphorylation in the context of disorder-order and order-disorder transitions. Finally we assess the role of multiple phosphorylation sites in a protein molecule, their possible cooperativity and function.

14.
J Mol Biol ; 426(1): 245-55, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103329

RESUMO

The retinoblastoma protein C-terminal domain (RbC) is necessary for the tumor suppressor protein's activities in growth suppression and E2F transcription factor inhibition. Cyclin-dependent kinase phosphorylation of RbC contributes to Rb inactivation and weakens the Rb-E2F inhibitory complex. Here we demonstrate two mechanisms for how RbC phosphorylation inhibits E2F binding. We find that phosphorylation of S788 and S795 weakens the direct association between the N-terminal portion of RbC (RbC(N)) and the marked-box domains of E2F and its heterodimerization partner DP. Phosphorylation of these sites and S807/S811 also induces an intramolecular association between RbC and the pocket domain, which overlaps with the site of E2F transactivation domain binding. A reduction in E2F binding affinity occurs with S788/S795 phosphorylation that is additive with the effects of phosphorylation at other sites, and we propose a structural mechanism that explains this additivity. We find that different Rb phosphorylation events have distinct effects on activating E2F family members, which suggests a novel mechanism for how Rb may differentially regulate E2F activities.


Assuntos
Fatores de Transcrição E2F/antagonistas & inibidores , Fatores de Transcrição E2F/metabolismo , Proteína do Retinoblastoma/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 110(49): 19784-9, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248348

RESUMO

The simplest way to describe the influence of the relative diffusion of the reactants on the time course of bimolecular reactions is to modify or renormalize the phenomenological rate constants that enter into the rate equations of conventional chemical kinetics. However, for macromolecules with multiple inequivalent reactive sites, this is no longer sufficient, even in the low concentration limit. The physical reason is that an enzyme (or a ligand) that has just modified (or dissociated from) one site can bind to a neighboring site rather than diffuse away. This process is not described by the conventional chemical kinetics, which is only valid in the limit that diffusion is fast compared with reaction. Using an exactly solvable many-particle reaction-diffusion model, we show that the influence of diffusion on the kinetics of multisite binding and catalysis can be accounted for by not only scaling the rates, but also by introducing new connections into the kinetic scheme. The rate constants that describe these new transitions or reaction channels turn out to have a transparent physical interpretation: The chemical rates are scaled by the appropriate probabilities that a pair of reactants, which are initially in contact, bind rather than diffuse apart. The theory is illustrated by application to phosphorylation of a multisite substrate.


Assuntos
Comunicação Celular/fisiologia , Difusão , Enzimas/metabolismo , Modelos Químicos , Catálise , Cinética , Fosforilação , Ligação Proteica
16.
Front Physiol ; 4: 315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24478706

RESUMO

Cell growth and proliferation require a complex series of tight-regulated and well-orchestrated events. Accordingly, proteins governing such events are evolutionary conserved, even among distant organisms. By contrast, it is more singular the case of "core functions" exerted by functional analogous proteins that are not homologous and do not share any kind of structural similarity. This is the case of proteins regulating the G1/S transition in higher eukaryotes-i.e., the retinoblastoma (Rb) tumor suppressor Rb-and budding yeast, i.e., Whi5. The interaction landscape of Rb and Whi5 is quite large, with more than one hundred proteins interacting either genetically or physically with each protein. The Whi5 interactome has been used to construct a concept map of Whi5 function and regulation. Comparison of physical and genetic interactors of Rb and Whi5 allows highlighting a significant core of conserved, common functionalities associated with the interactors indicating that structure and function of the network-rather than individual proteins-are conserved during evolution. A combined bioinformatics and biochemical approach has shown that the whole Whi5 protein is highly disordered, except for a small region containing the protein family signature. The comparison with Whi5 homologs from Saccharomycetales has prompted the hypothesis of a modular organization of structural disorder, with most evolutionary conserved regions alternating with highly variable ones. The finding of a consensus sequence points to the conservation of a specific phosphorylation rhythm along with two disordered sequence motifs, probably acting as phosphorylation-dependent seeds in Whi5 folding/unfolding. Thus, the widely disordered Whi5 appears to act as a hierarchical, "date hub" that has evolutionary assayed an original way of modular organization before being supplanted by the globular, multi-domain structured Rb, more suitable to cover the role of a "party hub".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA