Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Int J Chron Obstruct Pulmon Dis ; 19: 1661-1671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050737

RESUMO

Background: COPD causes substantial economic burden on healthcare. Alternative treatment strategies for COPD can be associated with different costs dependent upon their relative safety and effectiveness. We compared costs and healthcare resource utilization (HCRU) associated with LAMA or LABA/ICS initiation. Methods: Using the Korean National Health Insurance Service database, we enrolled COPD patients initiating treatment with LAMA or LABA/ICS between January 2005 and April 2015. Propensity score matched individuals were compared on all-cause and COPD-related medical costs and HCRU over a three-year follow-up period. Results: A total of 2444 patients were enrolled in each treatment group. LAMA group was associated with significantly lower costs than LABA/ICS group, both in all-cause (403.08 vs 474.50 USD per patient per month [PPPM], cost ratio 1.18, 95% confidence interval [CI]=1.10-1.26, p<0.0001) and COPD-related (216.37 vs 267.32 USD PPPM, cost ratio 1.24, 95% CI=1.13-1.35, p<0.0001) medical costs. All-cause HCRU was not significantly different between groups, while COPD-related HRCU was higher in LAMA group (0.66 vs 0.60 medical visits PPPM, p<0.0001). Conclusion: COPD patients initiating treatment with LAMA were associated with lower all-cause and COPD-related medical costs than those starting with LABA/ICS despite the similar all-cause HCRU and higher COPD-related HCRU. Initiation with LAMA is a cost-efficient option for the treatment of COPD.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Broncodilatadores , Bases de Dados Factuais , Custos de Medicamentos , Doença Pulmonar Obstrutiva Crônica , Brometo de Tiotrópio , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/economia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , República da Coreia/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Agonistas de Receptores Adrenérgicos beta 2/economia , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Brometo de Tiotrópio/administração & dosagem , Brometo de Tiotrópio/economia , Resultado do Tratamento , Broncodilatadores/economia , Broncodilatadores/administração & dosagem , Fatores de Tempo , Administração por Inalação , Antagonistas Muscarínicos/economia , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Muscarínicos/efeitos adversos , Corticosteroides/administração & dosagem , Corticosteroides/economia , Combinação de Medicamentos , Análise Custo-Benefício , Estudos Retrospectivos , Redução de Custos , Recursos em Saúde/estatística & dados numéricos , Recursos em Saúde/economia , Pulmão/fisiopatologia , Pulmão/efeitos dos fármacos
2.
Arch Pharm (Weinheim) ; : e2400337, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054609

RESUMO

A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.

3.
Mol Cell Neurosci ; 129: 103935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703973

RESUMO

Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.


Assuntos
Hipocampo , Plasticidade Neuronal , Transmissão Sináptica , Animais , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Ratos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Carbacol/farmacologia , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo , Ratos Wistar , Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/metabolismo , Agonistas Muscarínicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
4.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791333

RESUMO

Some signaling processes mediated by G protein-coupled receptors (GPCRs) are modulated by membrane potential. In recent years, increasing evidence that GPCRs are intrinsically voltage-dependent has accumulated. A recent publication challenged the view that voltage sensors are embedded in muscarinic receptors. Herein, we briefly discuss the evidence that supports the notion that GPCRs themselves are voltage-sensitive proteins and an alternative mechanism that suggests that voltage-gated sodium channels are the voltage-sensing molecules involved in such processes.


Assuntos
Receptores Acoplados a Proteínas G , Canais de Sódio Disparados por Voltagem , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Transdução de Sinais , Potenciais da Membrana
5.
Biochem Pharmacol ; 225: 116279, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740221

RESUMO

Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.


Assuntos
Células Acinares , Berberina , Sinalização do Cálcio , Receptor Muscarínico M3 , Animais , Berberina/farmacologia , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Camundongos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Masculino , Acetilcolina/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta a Droga
6.
Br J Pharmacol ; 181(17): 3064-3081, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38689378

RESUMO

BACKGROUND AND PURPOSE: Current pharmacotherapies for Tourette syndrome (TS) are often unsatisfactory and poorly tolerated, underscoring the need for novel treatments. Insufficient striatal acetylcholine has been suggested to contribute to tic ontogeny. Thus, we tested whether activating M1 and/or M4 receptors-the two most abundant muscarinic receptors in the striatum-reduced tic-related behaviours in mouse models of TS. EXPERIMENTAL APPROACH: Studies were conducted using CIN-d and D1CT-7 mice, two TS models characterized by early-life depletion of striatal cholinergic interneurons and cortical neuropotentiation, respectively. First, we tested the effects of systemic and intrastriatal xanomeline, a selective M1/M4 receptor agonist, on tic-like and other TS-related responses. Then, we examined whether xanomeline effects were reduced by either M1 or M4 antagonists or mimicked by the M1/M3 agonist cevimeline or the M4 positive allosteric modulator (PAM) VU0467154. Finally, we measured striatal levels of M1 and M4 receptors and assessed the impact of VU0461754 on the striatal expression of the neural marker activity c-Fos. KEY RESULTS: Systemic and intrastriatal xanomeline reduced TS-related behaviours in CIN-d and D1CT-7 mice. Most effects were blocked by M4, but not M1, receptor antagonists. VU0467154, but not cevimeline, elicited xanomeline-like ameliorative effects in both models. M4, but not M1, receptors were down-regulated in the striatum of CIN-d mice. Additionally, VU0467154 reduced striatal c-Fos levels in these animals. CONCLUSION AND IMPLICATIONS: Activation of striatal M4, but not M1, receptors reduced tic-like manifestations in mouse models, pointing to xanomeline and M4 PAMs as novel putative therapeutic strategies for TS.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Agonistas Muscarínicos , Receptor Muscarínico M4 , Síndrome de Tourette , Animais , Síndrome de Tourette/metabolismo , Síndrome de Tourette/tratamento farmacológico , Receptor Muscarínico M4/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inibidores , Camundongos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Masculino , Agonistas Muscarínicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Piridinas/farmacologia , Tiques/tratamento farmacológico , Tiques/metabolismo , Tiofenos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/agonistas , Dioxóis/farmacologia , Camundongos Endogâmicos C57BL , Tiadiazóis
7.
Int Arch Allergy Immunol ; : 1-10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565078

RESUMO

INTRODUCTION: The muscarinic M3 receptor antagonist, tiotropium, has a bronchodilatory effect on asthma patients. Additionally, tiotropium inhibits allergic airway inflammation and remodeling in a murine asthma model. However, the underlying mechanisms of this M3 receptor antagonist remain unclear. Therefore, we investigated the effect of muscarinic M3 receptor blockage on M2 macrophage development during allergic airway inflammation. METHODS: BALB/c mice were sensitized and challenged with ovalbumin to develop a murine model of allergic airway inflammation mimicking human atopic asthma. During the challenge phase, mice were treated with or without tiotropium. Lung cells were isolated 24 h after the last treatment and gated using CD68-positive cells. Relm-α and Arginase-1 (Arg1) (M2 macrophage markers) expression was determined by flow cytometry. Mouse bone marrow mononuclear cell-derived macrophages (mBMMacs) and human peripheral blood mononuclear cells (PBMCs)-derived macrophages were stimulated with IL-4 and treated with a muscarinic M3 receptor antagonist in vitro. RESULTS: The total cells, eosinophils, and IL-5 and IL-13 levels in BAL fluids were markedly decreased in the asthma group treated with tiotropium compared to that in the untreated asthma group. The Relm-α and Arg1 expression in macrophages was reduced considerably in the asthma group treated with tiotropium compared to that in the untreated asthma group, suggesting that the development of M2 macrophages was inhibited by muscarinic M3 receptor blockage. Additionally, muscarinic M3 receptor blockage in vitro significantly inhibited M2 macrophage development in both mBMMacs- and PBMCs-derived macrophages. CONCLUSIONS: Muscarinic M3 receptor blockage inhibits M2 macrophage development and prevents allergic airway inflammation. Moreover, muscarinic M3 receptors might be involved in the differentiation of immature macrophages into M2 macrophages.

8.
J Alzheimers Dis ; 98(4): 1515-1532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578893

RESUMO

Background: Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective: We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods: MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results: MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions: FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Receptor Muscarínico M4 , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Colinérgicos , Lipídeos
9.
J Neurochem ; 168(6): 995-1018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664195

RESUMO

Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4ß2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.


Assuntos
Acetilcolina , Camundongos Endogâmicos C57BL , Neurônios , Animais , Camundongos , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/fisiologia , Receptores Colinérgicos/metabolismo , Feminino , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia
10.
Int Neurourol J ; 28(Suppl 1): 46-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461856

RESUMO

PURPOSE: Adreno-muscarinic synergy, a supra-additional contractile response to simultaneous application of α-adrenoreceptor and muscarinic receptor agonists, is a feature of several lower urinary tract regions that have dual sympathetic and parasympathetic innervation. We tested the hypothesis that synergy is also a feature of prostate tissue obtained from men with benign prostatic enlargement. METHODS: Isolated tissue strips were dissected from prostate 'chips', collected after transurethral prostate resection procedures for in vitro experiments, to measure isometric tension at 36°C. RESULTS: Added separately to the superfusate, phenylephrine and carbachol generated contractions with mean pEC50 (-log10EC50) values of 5.36 and 5.58, respectively, although phenylephrine maximal responses were about six-fold greater. In the presence of carbachol, the mean phenylephrine pEC50 was significantly increased to 5.84 and maximal response increased by 28%; overall, a significant synergistic response was demonstrated. The synergistic response was reduced by muscarinic receptor antagonists, most potently by the M3-selective agent 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide), and less so by M2 and M1-selective inhibitors gallamine and pirenzepine, but with an overall profile indicating M3/M2 mediation of the synergistic response. The magnitude of the synergistic response was variable between prostate chips that provided isolated preparations suggesting regional heterogenicity, although their zonal origin could not be determined. CONCLUSION: These experiments show that adreno-muscarinic contractile synergy is a feature of human hyperplastic prostate tissue. This has implications for the use of a combination therapy of α-blockers and anti-muscarinic agent to relieve secondary symptoms associated with benign prostatic hyperplasia, at least in men who can tolerate antimuscarinics without a risk of retention.

11.
Curr Alzheimer Res ; 21(1): 50-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529600

RESUMO

Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-ß plaques and tau protein-rich neurofibrillary tangles. Amyloid-ß also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.


Assuntos
Doença de Alzheimer , Receptores Colinérgicos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Receptores Colinérgicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38308688

RESUMO

The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after ß-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of ß-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.

13.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38331584

RESUMO

Cholinergic regulation of hippocampal theta oscillations has long been proposed to be a potential mechanism underlying hippocampus-dependent memory encoding processes. However, cholinergic transmission has been traditionally associated with type II theta under urethane anesthesia. The mechanisms and behavioral significance of cholinergic regulation of type I theta in freely exploring animals is much less clear. In this study, we examined the potential behavioral significance of cholinergic regulation of theta oscillations in the object location task in male mice that involves training and testing trials and provides an ideal behavioral task to study the underlying memory encoding and retrieval processes, respectively. Cholinergic regulation of hippocampal theta oscillations and the behavioral outcomes was examined by either intrahippocampal infusion of cholinergic receptor antagonists or knocking out cholinergic receptors in excitatory neurons or interneurons. We found that both muscarinic acetylcholine receptors (mAChRs) and α7 nicotinic AChRs (α7 nAChRs) regulated memory encoding by engaging excitatory neurons and interneurons, respectively. There is a transient upregulated theta oscillation at the beginning of individual object exploration events that only occurred in the training trials, but not in the testing trials. This transient upregulated theta is also the only theta component that significantly differed between training and testing trials and was sensitive to mAChR and α7 nAChR antagonists. Thus, our study has revealed a transient cholinergic-sensitive theta component that is specifically associated with memory encoding, but not memory retrieval, in the object location task, providing direct experimental evidence supporting a role for cholinergic-regulated theta oscillations in hippocampus-dependent memory encoding processes.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Masculino , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hipocampo/fisiologia , Receptores Nicotínicos/metabolismo , Neurônios/fisiologia , Agonistas Nicotínicos/farmacologia , Ritmo Teta/fisiologia
14.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262412

RESUMO

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptor Muscarínico M1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Colinérgicos/uso terapêutico
15.
Mol Biotechnol ; 66(2): 254-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37079267

RESUMO

Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.


Assuntos
Receptor Muscarínico M1 , Zumbido , Humanos , Receptor Muscarínico M1/química , Acetilcolina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Zumbido/tratamento farmacológico
16.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050146

RESUMO

Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.


Assuntos
Colinérgicos , Neurônios , Camundongos , Masculino , Feminino , Animais , Colinérgicos/farmacologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/farmacologia , Córtex Pré-Frontal/fisiologia , Receptor Muscarínico M1
17.
J Allergy Clin Immunol ; 153(3): 793-808.e2, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000698

RESUMO

BACKGROUND: Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE: Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS: Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS: At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS: ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.


Assuntos
Asma , Interleucina-33 , Camundongos , Animais , Humanos , Interleucina-33/metabolismo , Camundongos Knockout , Pulmão , Epitélio , Acetilcolina , Alérgenos , Colinérgicos , Receptores Colinérgicos/metabolismo
18.
Chirality ; 36(2): e23632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994273

RESUMO

The R,S-enantiomer impurity and diastereomer impurities (S,S-isomer and R,R-isomer) of the solifenacin (S,R-enantiomer) were effectively separated and quantified simultaneously utilizing normal-phase high-performance liquid chromatography with a chiral stationary phase consisting of amylose tris (3,5-dimethylphenylcarbamate) coated on silica-gel (Chiralpak, AD-H). The enantiomeric and stereo-selective separation was achieved within a run time of 35 minutes using a mobile phase of 'n-hexane, ethanol, and diethylamine' in an isocratic elution mode with a detection wavelength of 220 nm. The validation attributes assessed were accuracy (which showed excellent recoveries between 97.5% and 100.4%) and linearity (which was proven in the range of 0.081-1.275 µg.mL-1 , with a linear regression of 0.999). The stress testing experiments proved that the developed methodology by the HPLC technique has stability-indicating characteristics, as all closely eluting peak pairs were separated well with a resolution of 2.3 and without any interference. The proposed methodology was highly efficient in separating and simultaneously determining the chiral impurities (enantiomers and diastereomers) of the solifenacin in the release and stability sample analyses of drug substances and tablets in pharmaceutical formulations.


Assuntos
Amilose , Fenilcarbamatos , Succinato de Solifenacina , Cromatografia Líquida de Alta Pressão/métodos , Amilose/química , Estereoisomerismo , Receptores Muscarínicos
19.
Poult Sci ; 103(2): 103275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042041

RESUMO

Atrial and ventricular myocardium from young (6-wk-old), young adult (3-6-mo-old), and aged (14-15-mo-old) meat-type (B.U.T. Big 6) and wild-type (Cröllwitzer) turkeys were used to study the influence of age and sex on cholinergic muscarinic receptors using [3H]-N-methyl-scopolamine (3H-NMS) binding studies. In both breeds, saturation experiments indicated the presence of regional-, sex-, and age-related differences in the density of cholinergic muscarinic receptors (Bmax), that is, a decrease or increase. Except for right atria, Bmax was decreased in both male and female B.U.T. Big 6 hearts with increasing age. Similarly, a negative correlation between Bmax and age could be seen in female and male atria of Cröllwitzer turkeys, while positive correlation could be seen in right and left ventricles of male, and only right ventricles of female Cröllwitzer turkeys. The affinity of the receptor (KD) was not affected by age, sex and breed. In all cardiac chamber tissues, the M2-subtype was shown to be predominant followed by the M3-subtype and to a lesser extent the M1-subtype. Aspects of this age-dependent remodeling of the heart differ between sexes, resulting in maladaptive changes in older turkeys with a high degree of frailty. These observations may help explain why males and females are susceptible to different cardiovascular diseases as they age and why frail older adults are most often affected by these diseases.


Assuntos
Ventrículos do Coração , Perus , Masculino , Feminino , Animais , Perus/metabolismo , Galinhas/metabolismo , Átrios do Coração , Receptores Muscarínicos/metabolismo , Miocárdio/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacologia
20.
J Vet Med Sci ; 86(2): 202-206, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38104972

RESUMO

Habu snakes (Protobothrops flavoviridis) are pit vipers found in the geographically adjacent but ecologically divergent islands of Tokunoshima and Amami-Oshima in southwestern Japan. Abiotic factors can cause variation in animal populations between the two islands, and Habu snakes may show such intraspecific physiological variation. We therefore evaluated the vasoreactivity in aortas isolated from the Habu of both islands. Tokunoshima Habu showed significantly greater contractile responses to angiotensin (Ang) II, acetylcholine (ACh) and noradrenaline, and significantly higher affinities (pEC50) for Ang II and ACh, than Amami-Oshima Habu. ACh caused contractions in aortas from both populations, a finding previously unreported in snakes. Our findings indicate that vasoreactivity may differ between Tokunoshima and Amami-Oshima Habu.


Assuntos
Trimeresurus , Animais , Japão , Aorta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA