Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Pediatr Surg Int ; 40(1): 238, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167102

RESUMO

PURPOSE: We investigated the effects of mouse-derived DFAT on the myogenic differentiation of a mouse-derived myoblast cell line (C2C12) and examined the therapeutic effects of rat-derived DFAT on anal sphincter injury using a rat model. METHODS: C2C12 cells were cultured using DMEM and DFAT-conditioned medium (DFAT-CM), evaluating MyoD and Myogenin gene expression via RT-PCR. DFAT was locally administered to model rats with anorectal sphincter dysfunction 3 days post-CTX injection. Therapeutic effects were assessed through functional assessment, including anal pressure measurement using solid-state manometry pre/post-CTX, and on days 1, 3, 7, 10, 14, 17, and 21 post-DFAT administration. Histological evaluation involved anal canal excision on days 1, 3, 7, 14, and 21 after CTX administration, followed by hematoxylin-eosin staining. RESULTS: C2C12 cells cultured with DFAT-CM exhibited increased MyoD and Myogenin gene expression compared to control. Anal pressure measurements revealed early recovery of resting pressure in the DFAT-treated group. Histologically, DFAT-treated rats demonstrated an increase in mature muscle cells within newly formed muscle fibers on days 14 and 21 after CTX administration, indicating enhanced muscle tissue repair. CONCLUSION: DFAT demonstrated the potential to enhance histological and functional muscle tissue repair. These findings propose DFAT as a novel therapeutic approach for anorectal sphincter dysfunction treatment.


Assuntos
Canal Anal , Modelos Animais de Doenças , Regeneração , Animais , Ratos , Canal Anal/fisiopatologia , Camundongos , Regeneração/fisiologia , Manometria/métodos , Ratos Sprague-Dawley , Adipócitos , Miogenina/genética , Miogenina/metabolismo , Linhagem Celular , Masculino , Desdiferenciação Celular/fisiologia , Proteína MyoD/genética , Diferenciação Celular
2.
Cell Rep ; 43(8): 114587, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116208

RESUMO

Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.

3.
Exp Parasitol ; : 108823, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187057

RESUMO

Trichinosis is a common parasitic disease that affects the striated skeletal muscles, causing apoptotic and degenerative changes associated with myogenin expression in the affected myocytes. Hence, this study aimed to assess the ameliorative effects of stem cells and atorvastatin added to ivermectin on the infected myocytes during the muscular phase of murine trichinosis. 120 laboratory Swiss albino male mice were divided into 10 groups, and each group was subdivided into intestinal and muscular phases (each n = 6); uninfected control; untreated infected control; infected received ivermectin monotherapy; infected received atorvastatin monotherapy; infected received stem cells monotherapy; infected received ivermectin and atorvastatin dual therapy; infected received ivermectin and stem cells dual therapy; infected received atorvastatin and stem cells dual therapy; infected received ivermectin 0.2, atorvastatin 40, and stem cells triple therapy; and infected received ivermectin 0.1, atorvastatin 20, and stem cells triple therapy. Intestinal phase mice were sacrificed on the 5th day post-infection, while those of the muscular phase were sacrificed on the 35th day post-infection. Parasitological, histopathological, ultrastructural, histochemical, biochemical, and myogenin gene expression assessments were performed. The results revealed that mice that received ivermectin, atorvastatin, and stem cell triple therapies showed the maximum reduction in the adult worm and larvae burden, marked improvement in the underlying muscular degenerative changes (as was noticed by histopathological, ultrastructural, and histochemical Feulgen stain assessment), lower biochemical levels of serum NK-κB and tissue NO, and lower myogenin expression. Accordingly, the combination of stem cells, atorvastatin, and ivermectin affords a potential synergistic activity against trichinosis with considerable healing of the underlying degenerative sequel.

4.
Vet Res Forum ; 15(5): 243-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022580

RESUMO

The aims of current investigation were to study the growth performance, carcass traits, meat quality and expression profile of Myostatin (MSTN), Insulin-like growth factor-1 (IGF-I), Myogenin (MyoG) and Myogenic regulatory factor 4 (MRF4) genes in three commercial broiler strains including Ross (Ross 308), Cobb (Cobb 500), and Arian in 2023. A total number of 240 one-day-old chicks were reared under an equalized standard management condition for 6 weeks. Performance, organ weights, meat quality and the expression level of the myogenic genes in the pectoral muscle were investigated. The lowest body weight (BW), feed intake, weight gain and highest feed conversion ratio (FCR) was observed for Arian at the end of the study. The meat quality was similar between strains. The IGF-I expression level was significantly higher on 42 days of age in Cobb compared to Ross and Arian. The MRF4 expression level was significantly higher on 28 days of age in Cobb compared to Ross. The MyoG expression level was significantly lower in Arian compared to Cobb on 42 days of age. Furthermore, the MSTN expression level was significantly lower in Cobb compared to Ross and Arian on 42 days of age. The remarkable differences in gene expression levels at the end of the rearing period was supported by higher growth performance and BW of Cobb compared to Ross and Arian strains. In conclusion, the findings of current study could conveniently help assess the performance of these broiler strains under similar rearing condition.

5.
Sci Rep ; 14(1): 16422, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013963

RESUMO

Interactions between tissues and cell types, mediated by cytokines or direct cell-cell exchanges, regulate growth. To determine whether mature adipocytes influence the in vitro growth of trout mononucleated muscle cells, we developed an indirect coculture system, and showed that adipocytes (5 × 106 cells/well) derived from perivisceral adipose tissue increased the proliferation (BrdU-positive cells) of the mononucleated muscle cells (26% vs. 39%; p < 0.001) while inhibiting myogenic differentiation (myosin+) (25% vs. 15%; p < 0.001). Similar effects were obtained with subcutaneous adipose tissue-derived adipocytes, although requiring more adipocytes (3 × 107 cells/well vs. 5 × 106 cells/well). Conditioned media recapitulated these effects, stimulating proliferation (31% vs. 39%; p < 0.001) and inhibiting myogenic differentiation (32 vs. 23%; p < 0.001). Adipocytes began to reduce differentiation after 24 h, whereas proliferation stimulation was observed after 48 h. While adipocytes did not change pax7+ and myoD1/2+ percentages, they reduced myogenin+ cells showing inhibition from early differentiation stage. Finally, adipocytes increased BrdU+ cells in the Pdgfrα+ population but not in the myoD+ one. Collectively, our results demonstrate that trout adipocytes promote fibro-adipocyte precursor proliferation while inhibiting myogenic cells differentiation in vitro, suggesting the key role of adipose tissue in regulating fish muscle growth.


Assuntos
Adipócitos , Adipogenia , Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Animais , Adipócitos/citologia , Técnicas de Cocultura , Células Cultivadas , Truta , Meios de Cultivo Condicionados/farmacologia
6.
Surg Neurol Int ; 15: 221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974556

RESUMO

Background: Alveolar rhabdomyosarcoma (ARMS) shows a predilection for the peripheral extremities and is very rarely identified as a primary in the brain. Here, we report a case of ARMS with multiple lesions exclusively within the central nervous system (CNS). Case Description: A 20-year-old man presented to our hospital with a gradually increasing headache and disturbance of consciousness. Neuroimaging showed hydrocephalus and multiple tumor lesions, including in the brainstem and cerebellum, with uniform gadolinium enhancement on T1-weighted magnetic resonance imaging, as well as spinal cord seeding. Cerebrospinal fluid (CSF) analysis showed a slightly elevated cell count (6/µL; normal, <5/µL) and highly elevated protein (153 mg/dL). In addition, atypical cells were cytologically identified in the CSF. No other laboratory findings were abnormal. Emergency ventricular drainage was performed to control cerebral pressure, followed by a biopsy to confirm the diagnosis. Histological examination revealed a fascicular arrangement of oval cells with eosinophilic cytoplasm and tumor cells with pleomorphic nuclei and prominent nucleoli. Immunohistochemical studies showed negative results for glial fibrillary acidic protein and positive results for desmin and myogenin. In addition, molecular analysis revealed that this tumor had the H3F3A p.Lys28Met mutation and no paired box (PAX)3-forkhead box O1 (FOXO1) or PAX7-FOXO1 fusion genes. ARMS was, therefore, diagnosed. Chemotherapy and radiotherapy were subsequently initiated, but tumor growth could not be controlled, and the patient died 6 months after surgery. Conclusion: This report describes an extremely rare case of ARMS arising exclusively within the CNS.

7.
Front Biosci (Landmark Ed) ; 29(2): 49, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420814

RESUMO

BACKGROUND: Myogenin is well known as a crucial transcription factor in skeletal muscle development, yet its other biological functions remain unexplored. Previous research showed that myogenin suppresses apoptosis induced by angiotensin II in human induced pluripotent stem cell-derived cardiomyocytes, and offered a new perspective on myogenin's role in cardioprotection. However, the detailed mechanism of this cardioprotection, especially under oxidative stress, is still unclear. METHODS: In this study, hydrogen peroxide (H2O2) was used to generate reactive oxygen species in myogenin-overexpressing cardiomyocytes. The apoptosis was examined by flow cytometry. Transcriptome sequencing (RNA-seq) was performed to identify genes regulated by myogenin. Western blotting was used to detect the protein level of DUSP13 and the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). The dual-luciferase reporter assay and ChIP assay were used to confirm the binding of myogenin to the promoter region of DUSP13. DUSP13 overexpression and knockdown assays were performed to study its anti-apoptotic role. RESULTS: Flow cytometry analysis of apoptosis showed that overexpressing myogenin for 24 and 48 hours decreased the apoptotic ratio by 47.9% and 63.5%, respectively, compared with untreated controls. Transcriptome sequencing performed on cardiomyocytes that expressed myogenin for different amounts of time (6, 12, 24, and 48 hours) identified DUSP13 as being up-regulated by myogenin. Western blotting showed that overexpression of myogenin increased the expression of DUSP13 and decreased the phosphorylation level of p38 MAPK. A dual-luciferase reporter assay proved that myogenin bound directly to the promoter region of DUSP13 and led to strong relative luciferase activity. Direct expression of DUSP13A and DUSP13B significantly reduced the rates of apoptosis and necrosis in cells treated with H2O2. Knockdown of DUSP13B significantly increased the rate of apoptosis in cells treated with H2O2. CONCLUSIONS: The present findings suggest that myogenin might attenuate apoptosis induced by reactive oxygen species by up-regulating DUSP13 and inactivating the p38 MAPK pathway.


Assuntos
Peróxido de Hidrogênio , Células-Tronco Pluripotentes Induzidas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Miogenina/genética , Miogenina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Apoptose , Estresse Oxidativo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Luciferases/metabolismo
8.
Int J Surg Pathol ; 32(3): 496-506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37489265

RESUMO

Background. Spindle cell/sclerosing rhabdomyosarcoma is a rare neoplasm and has an aggressive clinical course. Because of its rarity, we performed a multi-institutional collaboration to comprehend the overarching clinical, histopathological, and immunohistochemical characteristics of a cohort of spindle cell/sclerosing rhabdomyosarcoma. Materials and Methods. Forty-five patients with spindle cell/sclerosing rhabdomyosarcoma were identified. Demographics, clinical, histopathological, and immunohistochemistry data were reviewed and recorded. Results. The patients' age ranged from 1 to 85 years with a male to female ratio of 1.2:1. There were 15 children/adolescents and 30 adults. Eighteen (40%) tumors were located in the head and neck region. Twenty-four (53%) tumors displayed a bimorphic cellular arrangement with hypercellular areas having short, long, and sweeping fascicular and herringbone pattern, and hypocellular areas with stromal sclerosis and associated hyalinized and/or chondromyxoid matrix. Histomorphological differentials considered were leiomyosarcoma, malignant peripheral nerve sheath tumor, fibrosarcoma, nodular fasciitis, liposarcoma, synovial sarcoma, sarcomatoid carcinoma, solitary fibrous tumor, dermatofibrosarcoma protuberans, and schwannoma. Six tumors exhibited marked stromal sclerosis. The myogenic nature was confirmed by immunohistochemistry. Positivity for at least one skeletal muscle-associated marker (MyoD1 and/or myogenin) was observed. Conclusion. Spindle cell/sclerosing rhabdomyosarcoma diagnosis can be challenging as a number of malignant spindle cell neoplasm mimic this entity. Thus a correct diagnosis requires immunohistochemical work up with a broad panel of antibodies. In view of rarity of this neoplasm, further studies on a large cohort of patients with clinical follow-up data are needed for a better understanding of this tumor.


Assuntos
Neurofibrossarcoma , Rabdomiossarcoma , Adulto , Criança , Adolescente , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Imuno-Histoquímica , Esclerose/patologia , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/patologia , Músculo Esquelético/patologia , Biomarcadores Tumorais
9.
Artigo em Inglês | MEDLINE | ID: mdl-38112993

RESUMO

Aging represents a complex biological process associated with decline in skeletal muscle functions. Aging impairs satellite cells that serve as muscle progenitor cells. Probiotic supplementation may have many beneficial effects via various mechanisms. We examined the possible effects of probiotics in stimulating the proliferation of myogenic stellate cells in aging rats. Twenty-four male albino Sprague-Dawley rats were classified equally into four groups: adult control, old control, adult + probiotics, and old + probiotics. Probiotics (Lactobacillus LB) were administered gavage at a dose of 1 ml (1 × 109 CFU/ml/day) for 4 weeks. A significant increase in the relative gastrocnemius weight ratio and improvement of contractile parameters was detected in the old + probiotics group (0.6 ± 0.01) compared to the old control group (0.47 ± 0.01; P < 0.001). Probiotics significantly upregulated the activities of GSH, while NO and MDA were markedly decreased compared to control groups (P ≤ 0.001). Also, probiotics increased the mRNA and protein expressions of myogenin and CD34 (P < 0.05) as determined by real-time PCR and immunohistochemistry. Moreover, the old + probiotics group showed apparent restoration of the connective tissue spaces, reflecting the all-beneficial effects of probiotics. Our findings indicated that probiotics attenuated myopathic changes in aging rats probably through activation of the myogenic stellate cells. Probiotics improved the muscle weight, function, antioxidant activity, and myogenic transcription factors of the skeletal muscle.

10.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685838

RESUMO

Various pathological alterations, including lipid-deposition-induced comparative cardiac lipotoxicity, contribute to cardiac aging in the failing heart. A decline in endogenous myogenin proteins can lead to the reversal of muscle cell differentiation and the creation of mononucleated muscle cells. Myogenin may be a specific regulator of adaptive responses to avoid pathological hypertrophy in the heart. Hence, it is important to understand the regulation of myogenin expression and functions in response to exposure to varied stresses. In this study, we first examined and verified the cytotoxic effect of palmitic acid on H9c2 cells. The reduction in myogenin mRNA and protein expression by palmitic acid was independent of the effect of glucose. Meanwhile, the induction of cyclooxygenase 2 and activating transcription factor 3 mRNAs and proteins by palmitic acid was dependent on the presence of glucose. In addition, palmitic acid failed to disrupt cell cycle progression when H9c2 cells were treated with no glucose. Next, we examined the functional role of myogenin in palmitic-acid-treated H9c2 cells and found that myogenin may be involved in palmitic-acid-induced mitochondrial and cytosolic ROS generation, cellular senescence, and mitochondrial membrane potential. Finally, the GSE150059 dataset was deposited in the Gene Expression Omnibus website and the dataset was further analyzed via the molecular microscope diagnostic system (MMDx), demonstrating that many heart transplant biopsies currently diagnosed as no rejection have mild molecular-antibody-mediated rejection-related changes. Our data show that the expression levels of myogenin were lower than the average level in the studied population. Combining these results, we uncover part of the functional role of myogenin in lipid- and glucose-induced cardiac cell stresses. This finding provides valuable insight into the differential role of fatty-acid-associated gene expression in cardiovascular tissues. Additionally, the question of whether this gene expression is regulated by myogenin also highlights the usefulness of a platform such as MMDx-Heart and can help elucidate the functional role of myogenin in heart transplantation.


Assuntos
Transplante de Coração , Ácido Palmítico , Ácido Palmítico/farmacologia , Miogenina , Coração
11.
FASEB J ; 37(8): e23074, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392376

RESUMO

Myosin heavy chain-embryonic encoded by the Myh3 gene is a skeletal muscle-specific contractile protein expressed during mammalian development and regeneration, essential for proper myogenic differentiation and function. It is likely that multiple trans-factors are involved in this precise temporal regulation of Myh3 expression. We identify a 4230 bp promoter-enhancer region that drives Myh3 transcription in vitro during C2C12 myogenic differentiation and in vivo during muscle regeneration, including sequences both upstream and downstream of the Myh3 TATA-box that are necessary for complete Myh3 promoter activity. Using C2C12 mouse myogenic cells, we find that Zinc-finger E-box binding homeobox 1 (Zeb1) and Transducin-like Enhancer of Split 3 (Tle3) proteins are crucial trans-factors that interact and differentially regulate Myh3 expression. Loss of Zeb1 function results in earlier expression of myogenic differentiation genes and accelerated differentiation, whereas Tle3 depletion leads to reduced expression of myogenic differentiation genes and impaired differentiation. Tle3 knockdown resulted in downregulation of Zeb1, which could be mediated by increased expression of miR-200c, a microRNA that binds to Zeb1 transcript and degrades it. Tle3 functions upstream of Zeb1 in regulating myogenic differentiation since double knockdown of Zeb1 and Tle3 resulted in effects seen upon Tle3 depletion. We identify a novel E-box in the Myh3 distal promoter-enhancer region, where Zeb1 binds to repress Myh3 expression. In addition to regulation of myogenic differentiation at the transcriptional level, we uncover post-transcriptional regulation by Tle3 to regulate MyoG expression, mediated by the mRNA stabilizing Human antigen R (HuR) protein. Thus, Tle3 and Zeb1 are essential trans-factors that differentially regulate Myh3 expression and C2C12 cell myogenic differentiation in vitro.


Assuntos
Proteínas Correpressoras , Músculo Esquelético , Cadeias Pesadas de Miosina , Fatores de Transcrição , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Proteínas Correpressoras/genética , Proteínas Contráteis , Proteína Semelhante a ELAV 1 , Músculo Esquelético/embriologia , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
12.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511016

RESUMO

Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and polybromo-associated BAF (PBAF). The biological roles for the different enzyme sub-families are poorly described. We knocked down the expression of genes encoding unique subunit proteins for each sub-family, Baf250A, Brd9, and Baf180, which mark the BAF, ncBAF, and PBAF sub-families, respectively, and examined the requirement for each in myoblast differentiation. We found that Baf250A and the BAF complex were required to drive lineage-specific gene expression. KD of Brd9 delayed differentiation. However, while the Baf250A-dependent gene expression profile included myogenic genes, the Brd9-dependent gene expression profile did not, suggesting Brd9 and the ncBAF complex indirectly contributed to differentiation. Baf180 was dispensable for myoblast differentiation. The results distinguish between the roles of the mSWI/SNF enzyme sub-families during myoblast differentiation.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Humanos , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Montagem e Desmontagem da Cromatina/genética , Mioblastos/metabolismo , Mamíferos/metabolismo
13.
J Cell Physiol ; 238(9): 2103-2119, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435895

RESUMO

Skeletal muscle maintenance depends largely on muscle stem cells (satellite cells) that supply myoblasts required for muscle regeneration and growth. The ubiquitin-proteasome system is the major intracellular protein degradation pathway. We previously reported that proteasome dysfunction in skeletal muscle significantly impairs muscle growth and development. Furthermore, the inhibition of aminopeptidase, a proteolytic enzyme that removes amino acids from the termini of peptides derived from proteasomal proteolysis, impairs the proliferation and differentiation ability of C2C12 myoblasts. However, no evidence has been reported on the role of aminopeptidases with different substrate specificities on myogenesis. In this study, therefore, we investigated whether the knockdown of aminopeptidases in differentiating C2C12 myoblasts affects myogenesis. The knockdown of the X-prolyl aminopeptidase 1, aspartyl aminopeptidase, leucyl-cystinyl aminopeptidase, methionyl aminopeptidase 1, methionyl aminopeptidase 2, puromycine-sensitive aminopeptidase, and arginyl aminopeptidase like 1 gene in C2C12 myoblasts resulted in defective myogenic differentiation. Surprisingly, the knockdown of leucine aminopeptidase 3 (LAP3) in C2C12 myoblasts promoted myogenic differentiation. We also found that suppression of LAP3 expression in C2C12 myoblasts resulted in the inhibition of proteasomal proteolysis, decreased intracellular branched-chain amino acid levels, and enhanced mTORC2-mediated AKT phosphorylation (S473). Furthermore, phosphorylated AKT induced the translocation of TFE3 from the nucleus to the cytoplasm, promoting myogenic differentiation through increased expression of myogenin. Overall, our study highlights the association of aminopeptidases with myogenic differentiation.


Assuntos
Leucil Aminopeptidase , Desenvolvimento Muscular , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Metionil Aminopeptidases/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Leucil Aminopeptidase/metabolismo
14.
Parasitol Int ; 96: 102773, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330041

RESUMO

Trichinella spiralis (T. spiralis)-induced myopathy is an inflammatory myopathy that is difficult to treat unless the parasite is combated in its early intestinal phase before it reaches the muscles. This study aimed to evaluate the effect of local mesenchymal stem cell (MSC) therapy on T. spiralis-induced inflammatory myopathy in rats. Rats were divided into four groups: Group 1 (non-infected non-treated group); Group 2 (infected non-treated group); Group 3 (infected albendazole (ABZ)-treated group); and Group 4 (infected MSC-treated group). Their muscle status was assessed physiologically with the righting reflex and electromyography (EMG), parasitologically with the total muscle larval count, histopathologically with hematoxylin and eosin and Mallory's trichrome stains, as well as immunohistochemically for myogenin as a marker of muscle regeneration. Additionally, serum muscle enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as muscle matrix metalloproteinases MMP1 and MMP9, were assayed. Finally, the immunological response was assessed by measuring the levels of the muscle inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin-4 (IL-4). Our findings revealed that MSC therapy markedly improved muscle EMG and righting reflex, as well as the histopathological appearance of the muscles, reduced inflammatory cellular infiltrates, and increased myogenin immunostaining. It also reduced serum CK and LDH levels, as well as muscle INF-γ, TNF-α, IL-4, MMP1, and MMP9 levels. However, it had no effect on the total muscle larval count. Accordingly, due to its anti-inflammatory properties and muscle-regenerative effect, MSC therapy could be a promising new remedy for T. spiralis-induced myopathy.


Assuntos
Doenças Musculares , Miosite , Trichinella spiralis , Triquinelose , Ratos , Animais , Triquinelose/parasitologia , Interleucina-4 , Metaloproteinase 9 da Matriz , Metaloproteinase 1 da Matriz , Miogenina , Fator de Necrose Tumoral alfa , Miosite/terapia , Interferon gama , Células-Tronco , Terapia Biológica
15.
Mol Cell Endocrinol ; 573: 111951, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169322

RESUMO

Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) affects Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.


Assuntos
Geômis , Perciformes , Animais , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Estado Nutricional , Geômis/metabolismo , Proteólise , Miostatina/genética , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Peixes/metabolismo , Desenvolvimento Muscular/genética
16.
Physiol Rep ; 11(8): e15657, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37078370

RESUMO

Pemphigus Vulgaris (PV) is a blistering autoimmune disease caused by autoantibodies against desmoglein 1 and 3. Treatment options are limited to corticosteroids and immunosuppressants. The myotoxic effect of glucocorticoids is a fact that has been elucidated. So, the development of efficacious treatment approaches to combat muscle wasting is of great importance. Considering the adverse effect of glucocorticoid therapy in pemphigus patients and altered muscle metabolism, this study aimed to investigate the effect of l-carnitine supplementation which can be useful in combating muscle-wasting impact of glucocorticoid therapy. In this randomized double-blind placebo-controlled trial 44 pemphigus patients aged from 30 to 65 years, receiving glucocorticoid therapy were selected to evaluate the suitability of l-carnitine (LC) as an anti-wasting substance. Patients were randomly divided into two groups to receive 2 g/d l-carnitine or placebo for 8 weeks; serum markers of muscle metabolism (IGF-1, creatine kinase, myogenin, myostatin) was evaluated before and after the l-carnitine supplementation. Paired T-test was used to analyze the differences between variables before and after the intervention. Therefore, the student's t-test was performed to find any differences in baseline characteristics and dietary intakes between the trial groups. LC intake led to a significant rise in serum IGF-1 and a reduction in CK and myostatin levels compared to baseline (p < 0.05) but there were no significant inter-group differences in IGF-1 and CK levels; There was also a significant reduction in myostatin level in LC group (p < 0/05). Myogenin levels decreased in both LC and placebo groups but the decrease in the placebo group was significant (p = 0/008); it means LC prevent the myogenin decreasing trend in the LC group compared to placebo. In conclusion, LC supplementation beneficially changes the level of IGF-1 and myostatin and improves muscle metabolism and regeneration in PV patients.


Assuntos
Carnitina , Pênfigo , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Carnitina/uso terapêutico , Glucocorticoides/efeitos adversos , Pênfigo/tratamento farmacológico , Fator de Crescimento Insulin-Like I , Miogenina , Miostatina , Atrofia Muscular/tratamento farmacológico , Músculos , Método Duplo-Cego , Suplementos Nutricionais
17.
J Exerc Rehabil ; 19(1): 11-18, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36910676

RESUMO

The purpose of this study was to investigate the time-dependent alteration in whether concurrent aerobic exercise and bone marrow stromal cell (BMSC) engraftment could regulate myogenic differentiation-related signaling pathway in the soleus up to 35 days after sciatic nerve injury (SNI). The rats were divided as follows: the normal control (CON, n=5), sedentary group (SED, n=20), treadmill exercise group (TEX, n=20), BMSC transplantation group (BMSC, n=20), TEX+BMSC transplantation group (TEX+BMSC, n=20) 7, 14, 21, and 35 days after SNI. SNI was applied into the thigh and treadmill exercise was comprised of walking at a speed of 4 to 8 m/min for 30 min once a day. Harvested BMSC at a density of 5×106 in 50-µL phosphate-buff-ered saline was injected into the injury site. Phosphorylated (p) extracellular signal-regulated kinase 1/2 expression was dramatically upregulated in BMSC and BMSC+EX groups from 21 days after SNI compared to those in the SED group. P-ribosomal s6 kinase (RSK) was sharply increased 14 days later, and then rapidly downregulated from day 21, whereas TEX, BMSC and TEX+ BMSC groups significantly kept up expression levels of p-RSK until 35 days post injury than SED group. TEX+BMSC group significantly increased activation of protein kinase B-mammalian target of rapamycin in the soleus from day 14 and myoblast determination protein 1-myogen-in pathways was activated in TEX+BMSC group from day 21. Present findings provide information that combined intervention of aerobic exercise and BMSC transplantation might be a reliable therapeutic strategy for overcoming the morphological and functional problems in denervated soleus muscle.

18.
BMC Sports Sci Med Rehabil ; 15(1): 15, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747295

RESUMO

BACKGROUND: Skeletal muscle contractions due to exercise lead to the secretion of many proteins and proteoglycan peptides called myokines. Myostatin (MSTN) and Myogenin (MyoG) are two of the most important skeletal muscle growth regulatory factors related to myoblast differentiation and muscle hypertrophy. The present study aims at investigating the effects over eight weeks of high-intensity circuit training (HICT) on serum MyoG and MSTN in male soccer players. METHOD: The present study is a quasi-experimental study on 21 male soccer players (Experimental group: n = 11, Control group: n = 10) (ages 15.0 ± 3.4 years, body mass 55.7 ± 7.8 kg, height 173.3 ± 8.0 cm, Body mass index 18.4 ± 1.9 kg m-2, maximum oxygen uptake 61.89 ± 3.01 ml kg-1 and the peak height velocity 14.5 ± 0.3 years). Participants were randomly divided into two groups: training group and a control group. The first resting blood samples were obtained in the morning-fasting state, and the second blood samples were obtained after the maximum aerobic test at pre- and post-HICT. RESULTS: There were non-significant differences in resting serum values of MyoG (p = 0.309, p > 0.05) but significant differences in resting serum values of MSTN between the training and control groups after eight weeks of HICT (p = 0.003, p < 0.05). No significant differences were observed between groups in the acute response of serum values of MyoG (p = 0.413, p < 0.05) and MSTN (p = 0.465, p < 0.05) to the maximum aerobic test after eight weeks of HICT. CONCLUSION: These results suggest that eight weeks of HICT can decrease the resting serum values of MSTN but not change the resting serum values of MyoG in male adolescent soccer players. Also, eight weeks of HICT does not affect the acute response of MSTN and MyoG after a maximum aerobic test.

19.
J Vet Diagn Invest ; 35(2): 168-172, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36600502

RESUMO

Rhabdomyosarcoma (RMS), a malignant mesenchymal neoplasm derived from skeletal muscle, is relatively rare in both human and veterinary medicine. Here we report an unusual case of invasive spindle-cell RMS (SCRMS) with bone infiltration and pathologic fracture in a 3.5-y-old intact female Bulldog. Radiographically, a large, predominantly osteolytic mass in the tibia and fibula of the left hindlimb had features typical of a malignant primary bone tumor. Clinically, osteosarcoma was suspected, and the leg was amputated. Histologically, the mass was composed of loosely interwoven spindle-cell fascicles; tumor cells were fusiform with cigar-shaped nuclei and abundant eosinophilic cytoplasm. The neoplastic cells were strongly immunopositive for vimentin, muscle-specific actin, desmin, myogenin, and myoD1. Invasive SCRMS with osteolysis was diagnosed based on the histologic examination and immunohistochemical (IHC) stains. The dog was alive without any evidence of local recurrence or distant metastasis 18 mo post-surgery. RMS should be included in the differential diagnosis when osteolysis occurs; IHC staining confirmation is of great value for definitive diagnosis and treatment planning.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteólise , Osteossarcoma , Rabdomiossarcoma , Sarcoma , Animais , Cães , Feminino , Neoplasias Ósseas/veterinária , Doenças do Cão/diagnóstico , Osteólise/veterinária , Osteossarcoma/diagnóstico , Osteossarcoma/veterinária , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/patologia , Rabdomiossarcoma/veterinária , Sarcoma/patologia , Sarcoma/veterinária
20.
Gene ; 849: 146907, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174904

RESUMO

The flavanol (-)-epicatechin has exercise-mimetic properties. Besides, several miRNAs play a role in modulating the adaptation of the muscle to different training protocols. However, notwithstanding all information, few studies aimed to determine if (-)-epicatechin can modify the expression of miRNAs related to skeletal muscle development and regeneration. Mice were treated for fifteen days by oral gavage with the flavanol (-)-epicatechin. After treatment, the quadriceps of the mice was dissected, and total RNA was extracted. The expression level of miR-133, -204, -206, -223, -486, and -491 was analyzed by qRT-PCR. We also used bioinformatic analysis to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. Additionally, we analyzed the level of the myogenic proteins MyoD and myogenin by Western blot and measured the cross-sectional area of muscle fibers stained with E&H. (-)-Epicatechin upregulated the expression of miR-133, -204, -206, -223, and -491 significantly, which was associated with an increase in the level of the myogenic proteins MyoD and Myogenin and an augment in the fiber size. The bioinformatics analysis showed that the studied miRNAs might participate in different signal transduction pathways related to muscle development and adaptation. Our results showed that (-)-epicatechin upregulated miRNAs that participate in skeletal exercise muscle adaptation, induced muscle hypertrophy, and increased the level of myogenic proteins MyoD and MyoG.


Assuntos
Catequina , MicroRNAs , Camundongos , Animais , Miogenina/genética , Miogenina/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Catequina/farmacologia , Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA