Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.531
Filtrar
1.
J Appl Toxicol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096042

RESUMO

Skin sensitization is a key endpoint for safety assessment, especially for cosmetics and personal care products. The adverse outcome pathway for skin sensitization and the chemical and biological events driving the induction of human skin sensitization are now well understood. Several non-animal test methods have been developed to predict sensitizer potential by measuring the impact of chemical sensitizers on these key events. In this work, we have focused on Key Event 1 (the molecular initiating step), which is based on formation of a covalent adduct between skin sensitizers and endogenous proteins and/or peptides in the skin. There exists three in-chemico assays approved by the Organization for Economic Co-operation and Development-(1) Direct Peptide Reactivity Assay (DPRA), (2) Amino Acid Derivative Reactivity Assay (ADRA), and (3) Kinetic Direct Peptide Reactivity Assay (kDPRA) to quantify peptide/amino acid derivative depletion after incubation with test chemicals. However, overestimated depletion of the cysteine-based peptide/amino acid derivatives is known in such assays because of the dimerization of the thiol group. In this present work, we report the synthesis and structural confirmation of the dimer of N-(2-[1-naphthyl]acetyl)-L-cysteine (NAC) from the ADRA assay to allow simultaneous determination of (a) peptide depletion by quantifying NAC monomer and (b) peptide dimerization by quantifying NAC dimer thereby eliminating the overestimation. We present a case study with three chemicals to demonstrate the importance of this approach. Thus, this simultaneous assay gives a more informed view of the peptide reactivity of chemicals to better identify skin sensitizers.

2.
Arch Plast Surg ; 51(4): 356-362, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086372

RESUMO

Background The purpose of this study was to clarify fading, red, green, and blue values (RGB) change, and color reproducibility for nipple-areola complex (NAC) tattoos. Methods NAC tattooing was performed on 60 sites in 59 Japanese patients prospectively. The evaluation was assessed using digital photo, Casmatch standardization, and RGB and luminance values preoperatively, immediately after, 1 week, 1, 3, 6, and 12 months after tattooing. RGB and luminance values changes over time, time-adjusted fading rate, and the rate of luminance at 12 months were calculated. In color reproducibility study ( n = 34), RGB values after 12 months were compared with the color sample about dark/reddish and light/less reddish pigments. Results RGB varied widely from immediately after to 1 month after tattooing. For RGB and luminance, significant differences were seen between pre and immediate after, 1 and 3 months, 3 and 6 months, and 6 and 12 months. In G values, significant differences were seen between all neighboring points. The fading rate tended to decrease as time progresses, but was not significant, that is, fading continued even between 6 and 12 months. Luminance was 9% brighter than contralateral NAC at 12 months. Color reproducibility tended to be higher with dark/reddish pigments, despite no significant differences. Conclusion The fading rate of tattooed NACs tended to decrease as time progresses, but fading still occurs between 6 and 12 months. Luminance was 9% brighter than contralateral NAC at 12 months after.

3.
J Exp Bot ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086268

RESUMO

Changes in both lignin biosynthesis and DNA methylation have been reported to be associated with chilling stress in plants. When stored at low temperatures, red-fleshed loquat is prone to lignification, with increased lignin content and fruit firmness, which has deleterious effects on taste and eating quality. Here, we found that 5°C storage mitigated the increasing firmness and lignin content of red-fleshed 'Dahongpao' ('DHP') loquat fruit that occurred during 0°C storage. EjNAC5 was identified by integrating RNA sequencing with whole-genome bisulfite sequencing analysis of 'DHP' loquat fruit. The transcript levels of EjNAC5 were positively correlated with changes in firmness and negatively correlated with changes in DNA methylation level of a differentially methylated region (DMR) in the EjNAC5 promoter. In white-fleshed 'Baisha' ('BS') loquat fruit, which do not undergo chilling-induced lignification at 0°C, the transcripts of EjNAC5 remained low and the methylation levels of the DMR in the EjNAC5 promoter was higher, compared to 'DHP' loquat fruit. Transient overexpression of EjNAC5 in loquat fruit and stable overexpression in Arabidopsis and liverwort led to an increase in lignin content. Furthermore, EjNAC5 interacts with EjERF39 and EjHB1 and activates the transcription of Ej4CL1 and EjPRX12 genes involved in lignin biosynthesis. This regulatory network involves different TFs to those involved in lignification pathway. Our study indicates that EjNAC5 promoter methylation modulates EjNAC5 transcript levels and identifies novel EjNAC5-EjERF39-Ej4CL1 and EjNAC5-EjHB1-EjPRX12 regulatory modules involved in chilling induced-lignification.

4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125738

RESUMO

The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Germinação , Mitocôndrias , Transcriptoma , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mitocôndrias/genética , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Germinação/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética
5.
Eur J Radiol ; 179: 111666, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39128250

RESUMO

OBJECTIVE: MAGnetic resonance Imaging Compilation (MAGiC) is typical method of synthetic magnetic resonance imaging (MRI). The present aimed to investigate the role of MAGiC parameters of relaxation time (T1), transverse relaxation time (T2) and proton density (PD) to predict the treatment efficacy of breast cancer patients after neoadjuvant chemotherapy (NAC). METHODS: The present prospective cohort study enrolled 120 breast cancer patients who received NAC during 2021-2023. Demographic data and clinical characteristics including tumor node metastasis (TNM) stage, pathological type, molecular classification and lymph node metastasis were collected. The levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) were measured. Patients were divided by treatment efficacy using the Miller-Payne grading as partial pathological response (pPR) group and pathological complete response (pCR). The values of MAGiC parameters of longitudinal T1, T2, and PD values were recorded. RESULTS: In all 120 patients, 73 (60.83%) cases were with pPR and 47 (39.17%) cases were with pCR after treatment. T2 values were markedly lower in pPR patients compared with pCR patients. However, no significant difference was found for T1 and PD values. No significant correlation was observed between any of MAGiC parameters and HER-2, ER or PR. ROC curve showed T2 could be used for prediction of pPR with AUC 0.780. Lymph node metastasis and low levels of T2 were found as independent risk factors for pPR after treatment. CONCLUSION: The T2 value parameter from MAGiC is an independent risk factor for pPR following NAC in breast cancer patients, suggesting its potential as a biomarker for predicting treatment efficacy.

6.
Neurosci Lett ; : 137934, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142556

RESUMO

OBJECTIVE: To study the effects of resveratrol on heroin addiction-related behaviors and to preliminarily explore the possible intervention mechanism of resveratrol in heroin dependence. METHODS: The effects of resveratrol on heroin withdrawal symptoms were observed by naloxone; The effect of resveratrol on heroin reward memory acquisition was detected by CPP paradigm; The effect of resveratrol on the mental excitability of heroin was tested by open field experiment; The effect of resveratrol on heroin spatial learning and memory was tested by water maze test. Western blot was used to detect Sirtuin 1 (SIRT1) Expression of brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), and postsynaptic density protein (PSD95). RESULTS: The behavioral results showed that the withdrawal behavior of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05), and the shift score of the conditioned place preference test of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05) The spatial learning and memory ability of the water maze in the resveratrol intervention group was improved compared with the heroin chronic dependence group (P<0.05), and the mental excitability of the resveratrol intervention group was lower than that of the heroin chronic dependence group (P<0.05), but higher than that of the saline group (P<0.05); SIRT1 The expression levels of BDNF, GDNF and PSD95 protein were significantly increased (P<0.05). CONCLUSION: The behavioral results of this study suggest that resveratrol can be used as a potential drug to treat heroin dependence. At the same time, SIRT1 The expression of BDNF, GDNF, and PSD95 increased; SIRT1, BDNF, GDNF, and PSD95 play an essential role in heroin addiction.

7.
Cell Rep ; : 114474, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39127041

RESUMO

Listening to music is a promising and accessible intervention for alleviating symptoms of major depressive disorder. However, the neural mechanisms underlying its antidepressant effects remain unclear. In this study on patients with depression, we used auditory entrainment to evaluate intracranial recordings in the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAc), along with temporal scalp electroencephalogram (EEG). We highlight music-induced synchronization across this circuit. The synchronization initiates with temporal theta oscillations, subsequently inducing local gamma oscillations in the BNST-NAc circuit. Critically, the incorporated external entrainment induced a modulatory effect from the auditory cortex to the BNST-NAc circuit, activating the antidepressant response and highlighting the causal role of physiological entrainment in enhancing the antidepressant response. Our study explores the pivotal role of the auditory cortex and proposes a neural oscillation triple time-locking model, emphasizing the capacity of the auditory cortex to access the BNST-NAc circuit.

8.
Plant Direct ; 8(7): e620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962173

RESUMO

Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.

9.
Plant J ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961633

RESUMO

Global wheat production amounted to >780 MMT during 2022-2023 whose market size are valued at >$128 billion. Wheat is highly susceptible to high-temperature stress (HTS) throughout the life cycle and its yield declines 5-7% with the rise in each degree of temperature. Previously, we reported an array of HTS-response markers from a resilient wheat cv. Unnat Halna and described their putative role in heat acclimation. To complement our previous results and identify the key determinants of thermotolerance, here we examined the cytoplasmic proteome of a sensitive cv. PBW343. The HTS-triggered metabolite reprograming highlighted how proteostasis defects influence the formation of an integrated stress-adaptive response. The proteomic analysis identified several promising HTS-responsive proteins, including a NACα18 protein, designated TaNACα18, whose role in thermotolerance remains unknown. Dual localization of TaNACα18 suggests its crucial functions in the cytoplasm and nucleus. The homodimerization of TaNACα18 anticipated its function as a transcriptional coactivator. The complementation of TaNACα18 in yeast and overexpression in wheat demonstrated its role in thermotolerance across the kingdom. Altogether, our results suggest that TaNACα18 imparts tolerance through tight regulation of gene expression, cell wall remodeling and activation of cell defense responses.

10.
Plant Cell Environ ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963294

RESUMO

NAC-domain transcription factors (TFs) are plant-specific transcriptional regulators playing crucial roles in plant secondary cell wall (SCW) biosynthesis. SCW is important for plant growth and development, maintaining plant morphology, providing rigid support, ensuring material transportation and participating in plant stress responses as a protective barrier. However, the molecular mechanisms underlying SCW in eggplant have not been thoroughly explored. In this study, the NAC domain TFs SmNST1 and SmNST2 were cloned from the eggplant line 'Sanyue qie'. SmNST1 and SmNST2 expression levels were the highest in the roots and stems. Subcellular localization analysis showed that they were localized in the cell membrane and nucleus. Their overexpression in transgenic tobacco showed that SmNST1 promotes SCW thickening. The expression of a set of SCW biosynthetic genes for cellulose, xylan and lignin, which regulate SCW formation, was increased in transgenic tobacco. Bimolecular fluorescence and luciferase complementation assays showed that SmNST1 interacted with SmNST2 in vivo. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA) and Dual-luciferase reporter assays showed that SmMYB26 directly bound to the SmNST1 promoter and acted as an activator. SmNST1 and SmNST2 interact with the SmMYB108 promoter and repress SmMYB108 expression. Altogether, we showed that SmNST1 positively regulates SCW formation, improving our understanding of SCW biosynthesis transcriptional regulation.

11.
J Integr Plant Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953747

RESUMO

NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.

12.
Plant Physiol Biochem ; 214: 108938, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067103

RESUMO

Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Secas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Antioxidants (Basel) ; 13(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39061900

RESUMO

N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, ß-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred ß-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.

14.
Biomedicines ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39062166

RESUMO

Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.

15.
J Clin Med ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064168

RESUMO

N-acetyl-L-cysteine (NAC) was initially introduced as a treatment for mucus reduction and widely used for chronic respiratory conditions associated with mucus overproduction. However, the mechanism of action for NAC extends beyond its mucolytic activity and is complex and multifaceted. Contrary to other mucoactive drugs, NAC has been found to exhibit antioxidant, anti-infective, and anti-inflammatory activity in pre-clinical and clinical reports. These properties have sparked interest in its potential for treating chronic lung diseases, including chronic obstructive pulmonary disease (COPD), bronchiectasis (BE), cystic fibrosis (CF), and idiopathic pulmonary fibrosis (IPF), which are associated with oxidative stress, increased levels of glutathione and inflammation. NAC's anti-inflammatory activity is noteworthy, and it is not solely secondary to its antioxidant capabilities. In ex vivo models of COPD exacerbation, the anti-inflammatory effects have been observed even at very low doses, especially with prolonged treatment. The mechanism involves the inhibition of the activation of NF-kB and neurokinin A production, resulting in a reduction in interleukin-6 production, a cytokine abundantly present in the sputum and breath condensate of patients with COPD and correlates with the number of exacerbations. The unique combination of mucolytic, antioxidant, anti-infective, and anti-inflammatory properties positions NAC as a safe, cost-effective, and efficacious therapy for a plethora of respiratory conditions.

16.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063240

RESUMO

Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.


Assuntos
Angelica , Cumarínicos , Regulação da Expressão Gênica de Plantas , Lignina , Raízes de Plantas , Lignina/biossíntese , Cumarínicos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Angelica/genética , Angelica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Filogenia
17.
Aesthetic Plast Surg ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951227

RESUMO

BACKGROUND: Surgical chest masculinization procedures, especially gender-affirming top surgery (GATS), are becoming increasingly prevalent in the USA. While a variety of surgical techniques have been established as both safe and effective, there is limited research examining ideal aesthetic nipple appearance and incision scar pattern. This study employs patient images to understand the public's perception on top surgery outcomes when adjusting for BMI ranges and Fitzpatrick skin types. METHODS: Images from RealSelf modified via Adobe Photoshop depicted various scar types and nipple-areolar complex (NAC) sizes/positions. A Qualtrics survey was distributed utilizing Amazon Mechanical Turk. Statistical analysis was performed through JMP Pro 17 for ordinal and categorical values, with a p value less than or equal to 0.05 statistically significant. RESULTS: A moderately sized and laterally placed NAC was preferred. A transverse scar that resembles the pectoral border between the level of the inframammary fold and pectoral insertion was deemed most masculine and aesthetic. Majority of results demonstrated that this is unaffected by Fitzpatrick skin types. Increased BMI images impacted public preferences, as a nipple placed farther from the transverse incision (p = 0.04) and a transverse scar position closer to the IMF was preferred in higher BMI patients. CONCLUSIONS: An understanding of the most popular NAC and scar choices, as well as how these factors may differ when considering a Fitzpatrick skin type or BMI categorization was attained. This validates the importance of patient-centered approach when employing surgical techniques in GATS. Future studies intend to obtain reports from actual patients considering GATS. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable.

18.
Oncol Lett ; 28(3): 429, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049989

RESUMO

The present study aimed to clarify the prognostic role of the pre-treatment neutrophil-to-lymphocyte ratio (NLR) for the response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC). Due to conflicting results in currently available data, the specific focus of the present study was on evaluating the associations between the pre-treatment NLR and the rate of achieving a pathological complete response (pCR) and survival outcomes. For the present study, data from a cohort of 465 consecutive patients with LABC who underwent NAC at King Feisal Specialist Hospital and Research Center (Riyadh, Saudi Arabia) between 2005 and 2014 were obtained from a prospective BC database and analyzed. Patients were stratified into two groups based on an optimal NLR cut-off determined using the receiver operating characteristic curve. Logistic regression analyses were conducted to assess variables associated with pCR, and Cox regression analyses were used to assess variables associated with survival outcomes. The low pre-treatment NLR group (≤2.2) was found to exhibit a higher likelihood of achieving a pCR (odds ratio, 2.59; 95% CI, 1.52-4.38; P<0.001), along with higher 5-year disease-free survival (DFS) [75.8 vs. 64.9%; hazard ratio (HR), 0.69; 95% CI, 0.50-0.94; P=0.02] and 5-year overall survival (OS; 90.3 vs. 81.9; HR, 0.62; 95% CI, 0.39-0.98; P=0.04) rates compared with those in the high NLR group (>2.2). Sub-group analysis revealed that the observed significance in survival outcomes was driven by the triple-negative BC (TNBC) subgroup. Patients with residual TNBC disease and a high pre-treatment NLR were observed to have lower 5-year DFS (44.4 vs. 75.0%; P=0.02) and 5-year OS (55.9 vs. 84.5%; P=0.055) rates compared with those with residual TNBC disease and a low NLR. To conclude, data from the present study suggest that the pre-treatment NLR can serve as a viable independent prognostic factor for pCR following NAC in patients with LABC and for survival outcomes, particularly for patients with TNBC.

19.
Adv Pharmacol ; 100: 119-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034050

RESUMO

Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.


Assuntos
Acetilcisteína , Dendrímeros , Nanomedicina , Dendrímeros/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Acetilcisteína/química , Humanos , Animais , Nanomedicina/métodos , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos
20.
Viruses ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38932206

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) infections can induce the process of host cellular autophagy but have rarely been identified within the molecular autophagy signaling pathway. In the present study, we demonstrated that ISKNV induces ROS-mediated oxidative stress signals for the induction of 5'AMP-activated protein kinase/mechanistic target of rapamycin kinase (AMPK/mTOR)-mediated autophagy and upregulation of host antioxidant enzymes in fish GF-1 cells. We also examined ISKNV-induced oxidative stress, finding that reactive oxidative species (ROS) increased by 1.5-fold and 2.5-fold from day 2 to day 3, respectively, as assessed by the H2DCFDA assay for tracing hydrogen peroxide (H2O2), which was blocked by NAC treatment in fish GF-1 cells. Furthermore, ISKNV infection was shown to trigger oxidative stress/Nrf2 signaling from day 1 to day 3; this event was then correlated with the upregulation of antioxidant enzymes such as Cu/ZnSOD and MnSOD and was blocked by the antioxidant NAC. Using an MDC assay, TEM analysis and autophagy marker LC3-II/I ratio, we found that ROS stress can regulate autophagosome formation within the induction of autophagy, which was inhibited by NAC treatment in GF-1 cells. Through signal analysis, we found that AMPK/mTOR flux was modulated through inhibition of mTOR and activation of AMPK, indicating phosphorylation levels of mTOR Ser 2448 and AMPK Thr 172 from day 1 to day 3; however, this process was reversed by NAC treatment, which also caused a reduction in virus titer (TCID50%) of up to 1000 times by day 3 in GF-1 cells. Thus, ISKNV-induced oxidative stress signaling is blocked by antioxidant NAC, which can also either suppress mTOR/AMPK autophagic signals or reduce viral replication. These findings may provide the basis for the creation of DNA control and treatment strategies.


Assuntos
Proteínas Quinases Ativadas por AMP , Antioxidantes , Autofagia , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA