Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Transgenic Res ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287761

RESUMO

The study by Zheng et al. (2024) identifies a NAC transcription factor, SOMBRERO (SMB), localized in the root cap of Arabidopsis, which is essential for root halotropism. SMB influences root halotropism by establishing asymmetric auxin distribution in the lateral root cap (LRC) and maintaining the expression of the auxin influx carrier gene AUX1. This mechanism leads to directional root bending away from high salinity areas. The findings reveal the SMB-AUX1-auxin module as a crucial mediator in root cap signaling and root halotropic response.

2.
Plant Sci ; 349: 112258, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277049

RESUMO

Starch and proteins are main storage product to determine the appearance, cooking, texture, and nutritional quality of rice (Oryza sativa L.). OsNAC20 and OsNAC26, as pivotal transcription factors, redundantly regulate the expression of genes responsible for starch and protein synthesis in the rice endosperm. Any knockout of OsNAC20 or OsNAC26 did not result in visible endosperm defects. In this study, we had isolated and characterized a mutant named as floury endosperm25 (flo25). The caryopsis of the flo25 mutant exhibits a floury endosperm, accompanied by reductions in both the 1000-grain weight and grain length, as well as diminished levels of total starch and protein. Through map-based cloning, it was determined that FLO25 encodes a NAM, ATAF, and CUC (NAC) transcription factors, namely OsNAC26, with a lysine to asparagine substitution at position 98 in the flo25 mutant. Remarkably, lysine 98 is conserved across plants species, and this mutation does not alter the subcellular localization of OsNAC26 but significantly attenuates its transcriptional activity and its ability to activate downstream target genes. Furthermore, the mutant protein encoded by OsNAC26-flo25 could interact with OsNAC20, disrupting the native interaction between OsNAC20 proteins. Additionally, when lysine 98 is substituted with asparagine in OsNAC20, the resulting mutant protein, OsNAC20(K98N), similarly disrupts the interaction between OsNAC26 proteins. Collectively, these findings underscore the pivotal role of Lysine 98 (K) in modulating the transcriptional activity of NAC20/NAC26 within the rice endosperm.

3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273412

RESUMO

NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.


Assuntos
Cannabis , Regulação da Expressão Gênica de Plantas , Família Multigênica , Pressão Osmótica , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Cannabis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Cromossomos de Plantas/genética , Mapeamento Cromossômico
4.
J Hazard Mater ; 480: 135925, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39341195

RESUMO

Nickel (Ni) is an important micronutrient, but excess Ni is toxic to many plant species. Currently, relatively little is known about the genetic basis of the plant responses to Ni toxicity. Here, we demonstrate that NAC32 transcription factor functions as a core genetic hub to regulate the Ni toxicity responses in Arabidopsis. NAC32 negatively regulates root-Ni concentration through the IREG2 (IRON REGULATED2) encoding a transporter. NAC32 also induces local auxin biosynthesis in the root-apex transition zone by upregulating YUCCA 7 (YUC7)/8/9 expression, which results in a local enhancement of auxin signaling in root tips, especially under Ni toxicity, thereby impaired primary root growth. By analyses of various combinations of nac32 and ireg2 mutants, as well as nac32 and yuc7/8/9 triple mutants, including high-order quadruple mutant, we demonstrated that NAC32 negatively regulates Ni stress tolerance by acting upstream of IREG2 and YUC7/8/9 to modulate their function in Ni toxicity responses. ChIPqPCR, EMSA (electrophoretic mobility shift assay) and transient dual-LUC reporter assays showed that NAC32 transcriptionally represses IREG2 expression but activates YUC7/8/9 expression by directly binding to their promoters. Our work demonstrates that NAC32 coordinates Ni compartmentation and developmental plasticity in roots, providing a conceptual framework for understanding Ni toxicity responses in plants.

5.
Plant Biol (Stuttg) ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265049

RESUMO

The Nascent polypeptide-Associated Complex (NAC) family is among the largest plant-specific TF families and plays an important role in plant growth, development, and stress responses. NAC TFs have been extensively studied in plants such as rice and Arabidopsis; however, their characterization, functions, evolution, and expression patterns in Manihot esculenta (cassava) under environmental stress remain largely unexplored. Here, we used bioinformatic analyses and biotic stress responses to investigate the physicochemical properties, chromosome location, phylogeny, gene structure, expression patterns, and cis-elements in promoter regions of the NAC TFs in cassava. We identified 119 M. esculenta NAC (MeNAC) gene families, unevenly distributed on 16 chromosomes. We investigated expression patterns of all identified MeNAC TFs under Xanthomonas axonopodis pv. manihotis (Xam) infection, strain CHN11, at different time points. Only 20 MeNAC TFs showed expression of significant bacterial resistance. Six MeNACs (MeNAC7, 26, 63, 65, 77, and 113) were selected for functional analysis. qRT-PCR assays revealed that MeNAC7, 26, 63, 65, 77, and 113 were induced in response to XamCHN11 infection and may participate in the molecular interaction of cassava and bacterial blight. Interestingly, MeNAC26, MeNAC63, MeNAC65, and MeNAC113 responded to XamCHN11 infection at 3 h post-inoculation. Furthermore, we identified 13 stress-related cis-elements in promoter regions of the MeNAC genes that are involved in diverse environmental stress responses. Phylogenetic analysis revealed that MeNAC genes with similar structures and motif distributions were grouped. This study provides valuable insights into the evolution, diversity, and characterization of MeNAC TFs. It lays the groundwork for a better understanding of their biological roles and molecular mechanisms in cassava.

6.
J Agric Food Chem ; 72(36): 19826-19837, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213503

RESUMO

Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.


Assuntos
Antocianinas , Clorofila , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus persica , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/química , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Curr Issues Mol Biol ; 46(8): 8741-8751, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194733

RESUMO

NAC (NAM/ATAF1/2/CUC2) transcription factors regulate plant growth and development and stress responses. Because NAC transcription factors are known to play important roles in the regulation of salt tolerance in many plants, we aimed to explore their roles in the halophyte Suaeda glauca. Based on transcriptome sequencing data, we identified 25 NAC transcription factor gene family members. In a phylogenetic tree analysis with Arabidopsis thaliana NAC transcription factors, the SgNACs were divided into 10 groups. The physicochemical properties and conserved domains of the putative proteins, as well as the transcript profiles of their encoding genes, were determined for the 25 SgNAC genes using bioinformatic methods. Most of the S. glauca NAC genes were upregulated to some extent after 24 h of salt stress, suggesting that they play an important role in regulating the salt tolerance of S. glauca. These findings lay the foundation for further research on the functions and mechanisms of the NAC gene family in S. glauca.

8.
J Integr Plant Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953747

RESUMO

NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.

9.
Plant Direct ; 8(7): e620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962173

RESUMO

Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.

10.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063240

RESUMO

Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.


Assuntos
Angelica , Cumarínicos , Regulação da Expressão Gênica de Plantas , Lignina , Raízes de Plantas , Lignina/biossíntese , Cumarínicos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Angelica/genética , Angelica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Filogenia
11.
Plant Physiol Biochem ; 214: 108938, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067103

RESUMO

Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Secas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Plant Biol (Stuttg) ; 26(5): 764-776, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859551

RESUMO

The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Populus , Estresse Salino , Fatores de Transcrição , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Genoma de Planta , Cromossomos de Plantas/genética , Mapeamento Cromossômico
13.
Plant Physiol Biochem ; 213: 108828, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896914

RESUMO

The NAC (NAM, ATAF, and CUC) is one of the largest transcription factor gene families in plants. In this study, 180, 141, and 131 NAC family members were identified from Saccharum complex, including S. officinarum, S. spontaneum, and Erianthus rufipilus. The Ka/Ks ratio of ATAF subfamily was all less than 1. Besides, 52 ATAF members from 12 representative plants were divided into three clades and there was only a significant expansion in maize. Surprisingly, ABA and JA cis-elements were abundant in hormonal response factor, followed by transcriptional regulator and abiotic stressor. The ATAF subfamily was differentially expressed in various tissues, under low temperature and smut pathogen treatments. Further, the ScATAF1 gene, with high expression in leaves, stem epidermis, and buds, was isolated. The encoded protein, lack of self-activation activity, was situated in the cell nucleus. Moreover, SA and JA stresses down-regulated the expression of this gene, while ABA, NaCl, and 4°C treatments led to its up-regulation. Interestingly, its expression in the smut susceptible sugarcane cultivars was much higher than the smut resistant ones. Notably, the colors presented slight brown in tobacco transiently overexpressing ScATAF1 at 1 d after DAB staining, while the symptoms were more obvious at 3 d after inoculation with Ralstonia solanacearum, with ROS, JA, and SA signaling pathway genes significantly up-regulated. We thus speculated ScATAF1 gene could negatively mediate hypersensitive reactions and produce ROS by JA and SA signaling pathways. These findings lay the groundwork for in-depth investigation on the biological roles of ATAF subfamily in sugarcane.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Saccharum , Fatores de Transcrição , Saccharum/genética , Saccharum/microbiologia , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ralstonia solanacearum/fisiologia , Filogenia
14.
Planta ; 259(6): 147, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714547

RESUMO

MAIN CONCLUSION: CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the taste and quality of tea. In this study, a NAC TF gene CsNAC086 was isolated from tea plants and confirmed its regulatory role in the expression of flavonol synthase which is a key gene involved in the biosynthesis of flavonols in tea plant. Yeast transcription-activity assays showed that CsNAC086 has self-activation activity. The transcriptional activator domain of CsNAC086 is located in the non-conserved C-terminal region (positions 171-550), while the conserved NAC domain (positions 1-170) does not have self-activation activity. Silencing the CsNAC086 gene using antisense oligonucleotides significantly decreased the expression of CsFLS. As a result, the concentration of flavonols decreased significantly. In overexpressing CsNAC086 tobacco leaves, the expression of NtFLS was significantly increased. Compared with wild-type tobacco, the flavonols concentration increased. Yeast one-hybrid assays showed CsNAC086 did not directly regulate the gene expression of CsFLS. These findings indicate that CsNAC086 plays a role in regulating flavonols biosynthesis in tea plants, which has important implications for selecting and breeding of high-flavonols-concentration containing tea-plant cultivars.


Assuntos
Camellia sinensis , Flavonóis , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonóis/biossíntese , Flavonóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas
15.
Plant Cell Environ ; 47(8): 3132-3146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693781

RESUMO

Low temperature stress poses a significant challenge to the productivity of horticultural crops. The dynamic expression of cold-responsive genes plays a crucial role in plant cold tolerance. While NAC transcription factors have been extensively studied in plant growth and development, their involvement in regulating plant cold tolerance remains poorly understood. In this study, we focused on the identification and characterisation of SlNAC3 as the most rapid and robust responsive gene in tomato under low temperature conditions. Manipulating SlNAC3 through overexpression or silencing resulted in reduced or enhanced cold tolerance, respectively. Surprisingly, we discovered a negative correlation between the expression of CBF and cold tolerance in the SlNAC3 transgenic lines. These findings suggest that SlNAC3 regulates tomato cold tolerance likely through a CBF-independent pathway. Furthermore, we conducted additional investigations to identify the molecular mechanisms underlying SINAC3-mediated cold tolerance in tomatoes. Our results revealed that SlNAC3 controls the transcription of ethylene biosynthetic genes, thereby bursting ethylene release in response to cold stress. Indeed, the silencing of these genes led to an augmentation in cold tolerance. This discovery provides valuable insights into the regulatory pathways involved in ethylene-mediated cold tolerance in tomatoes, offering potential strategies for developing innovative approaches to enhance cold stress resilience in this economically important crop species.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Etilenos/metabolismo , Etilenos/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
16.
Biochem Biophys Res Commun ; 709: 149840, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564941

RESUMO

As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.


Assuntos
Solanum tuberosum , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas
17.
BMC Plant Biol ; 24(1): 343, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671396

RESUMO

BACKGROUND: Drought stress severely impedes plant growth, and only a limited number of species exhibit long-term resistance to such conditions. Pinus sylvestris var. mongolica, a dominant tree species in arid and semi-arid regions of China, exhibits strong drought resistance and plays a crucial role in the local ecosystem. However, the molecular mechanisms underlying this resistance remain poorly understood. RESULTS: Here, we conducted transcriptome sequence and physiological indicators analysis of needle samples during drought treatment and rehydration stages. De-novo assembly yielded approximately 114,152 unigenes with an N50 length of 1,363 bp. We identified 6,506 differentially expressed genes (DEGs), with the majority being concentrated in the heavy drought stage (4,529 DEGs). Functional annotation revealed enrichment of drought-related GO terms such as response to water (GO:0009415: enriched 108 genes) and response to water deprivation (GO:0009414: enriched 106 genes), as well as KEGG categories including MAPK signaling pathway (K04733: enriched 35 genes) and monoterpenoid biosynthesis (K21374: enriched 27 genes). Multiple transcription factor families and functional protein families were differentially expressed during drought treatment. Co-expression network analysis identified a potential drought regulatory network between cytochrome P450 genes (Unigene4122_c1_g1) and a core regulatory transcription factor Unigene9098_c3_g1 (PsNAC1) with highly significant expression differences. We validated PsNAC1 overexpression in Arabidopsis and demonstrated enhanced drought resistance. CONCLUSIONS: These findings provide insight into the molecular basis of drought resistance in P. sylvestris var. mongolica and lay the foundation for further exploration of its regulatory network.


Assuntos
Secas , Pinus sylvestris , Proteínas de Plantas , Transcriptoma , Pinus sylvestris/genética , Pinus sylvestris/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes de Plantas
18.
Plant Commun ; 5(7): 100923, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38637986

RESUMO

Freezing stress can seriously affect plant growth and development, but the mechanisms of these effects and plant responses to freezing stress require further exploration. Here, we identified a NAM, ATAF1/2, and CUC2 (NAC)-family transcription factor (TF), NAC056, that can promote freezing tolerance in Arabidopsis. NAC056 mRNA levels are strongly induced by freezing stress in roots, and the nac056 mutant exhibits compromised freezing tolerance. NAC056 acts positively in response to freezing by directly promoting key C-repeat-binding factor (CBF) pathway genes. Interestingly, we found that CBF1 regulates nitrate assimilation by regulating the nitrate reductase gene NIA1 in plants; therefore, NAC056-CBF1-NIA1 form a regulatory module for the assimilation of nitrate and the growth of roots under freezing stress. In addition, 35S::NAC056 transgenic plants show enhanced freezing tolerance, which is partially reversed in the cbfs triple mutant. Thus, NAC056 confers freezing tolerance through the CBF pathway, mediating plant responses to balance growth and freezing stress tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Congelamento , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
New Phytol ; 242(3): 1218-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481030

RESUMO

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397076

RESUMO

NAC transcription factors are commonly involved in the plant response to drought stress. A transcriptome analysis of root samples of the soybean variety 'Jiyu47' under drought stress revealed the evidently up-regulated expression of GmNAC19, consistent with the expression pattern revealed by quantitative real-time PCR analysis. The overexpression of GmNAC19 enhanced drought tolerance in Saccharomyces cerevisiae INVSc1. The seed germination percentage and root growth of transgenic Arabidopsis thaliana were improved in comparison with those of the wild type, while the transgenic soybean composite line showed improved chlorophyll content. The altered contents of physiological and biochemical indices (i.e., soluble protein, soluble sugar, proline, and malondialdehyde) related to drought stress and the activities of three antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) revealed enhanced drought tolerance in both transgenic Arabidopsis and soybean. The expressions of three genes (i.e., P5CS, OAT, and P5CR) involved in proline synthesis were decreased in the transgenic soybean hairy roots, while the expression of ProDH involved in the breakdown of proline was increased. This study revealed the molecular mechanisms underlying drought tolerance enhanced by GmNAC19 via regulation of the contents of soluble protein and soluble sugar and the activities of antioxidant enzymes, providing a candidate gene for the molecular breeding of drought-tolerant crop plants.


Assuntos
Arabidopsis , Glycine max , Glycine max/genética , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secas , Açúcares , Prolina/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA