RESUMO
Na4MnV(PO4)3 (NMVP) has gained attention for its high redox potential, good cycling stability, and competitive price but suffers from poor intrinsic electronic conductivity and Jahn-Teller effect from Mn3+. In this work, cation/anion doping strategy was used for Aspergillus niger-bioderived carbon-coated NMVP (NMVP/AN) to improve the structural stability and electrochemical performance, where Al3+ doping inhibited the dissolution of Mn and enhanced the Mn3+/Mn2+ redox pair activity; besides, F- doping not only weakens the Na2-O bond but also endows the hierarchical and porous structure of NMVP/AN, which led to a more rapid and fluid transfer of Na+. The elaborately designed Na3.9Mn0.9Al0.1V(PO4)3/AN (NMAVP/AN) exhibits 105.9 mA h g-1 at 0.5 C, and the as-prepared Na3.1MnV(PO3.7F0.3)3/AN (NMVPF/AN) delivers 104.1 mA h g-1 at 5 C. Further demonstration of the hard carbon//NMAVP/AN full cell manifests the good potential of Al3+-doped NMVP/AN for practical applications (100.6 mA h g-1 at 1 C). These findings open up the possibility of unlocking the high-performance Na superionic conductor (NASICON).
RESUMO
Na3V2(PO4)3 (NVP) has gained a lot of attention due to its remarkable properties, such as its robust crystal structure, cycle life, rate capabilities, and so on. Nevertheless, NVP undergoes a substantial decrease in its rate capability at low temperatures, which limits its practical applications. In this study, the performance of NVP at low, room, and high temperatures during cycling is thoroughly investigated using synchrotron operando X-ray diffraction. The (de)insertion of two sodium ions from Na3V2(PO4)3 to Na1V2(PO4)3 appeared to occur via two intermediate phases (Na2V2(PO4)3 and Na1.64V2(PO4)3). The Na1.64V2(PO4)3 phase which is observed for the first-time during operando XRD measurements of NVP, exhibited limited stability at high temperatures. The increase in the quantity of these intermediate phases from high to low temperatures, especially at high C-rates, could be anticipated to be one of the contributing factors of poor rate capabilities of NVP at low temperatures. This study encourages the exploration of suitable strategies to enhance the performance of NVP at low temperatures and high C-rates.
RESUMO
Olivine-like NaFePO4 glasses and nanocomposites are promising materials for cathodes in sodium batteries. Our previous studies focused on the preparation of NaFePO4 glass, transforming it into a nanocomposite using high-pressure-high-temperature treatment, and comparing both materials' structural, thermal, and DC electric conductivity. This work focuses on specific features of AC electric conductivity, containing messages on the dynamics of translational processes. Conductivity spectra measured at various temperatures are scaled by apparent DC conductivity and plotted against frequency scaled by DC conductivity and temperature in a so-called master curve representation. Both glass and nanocomposite conductivity spectra are used to test the (effective) exponent using Jonscher's scaling law. In both materials, the values of exponent range from 0.3 to 0.9, with different relation to temperature. It corresponds to the electronic conduction mechanism change from low-temperature Mott's variable range hopping (between Fe2+/Fe3+ centers) to phonon-assisted hopping, which was suggested by previous DC measurements. Following the pressure treatment, AC conductivity activation energies were reduced from EAC≈0.40 eV for glass to EAC≈0.18 eV for nanocomposite and are lower than their DC counterpart, following a typical empirical relation with the value of the exponent. While pressure treatment leads to a 2-3-orders-of-magnitude rise in the AC and apparent DC conductivity due to the reduced distance between the hopping centers, a nonmonotonic relation of AC power exponent and temperature is observed. It occurs due to the disturbance of polaron interactions with Na+ mobile ions.
RESUMO
The inevitable shift toward renewable energy and electrification necessitates earth-abundant sodium reserves for next-generation Na-based energy storage technologies. By coupling the benefits of solid electrolytes over traditional nonaqueous electrolytes due to their safety hazards, solid-state sodium-ion batteries hold huge prospects in the future. This work presents a comprehensively developed solid-state sodium-ion symmetric full cell operating at room temperature enabled through a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer electrolyte and modified NASICON-structured positive and negative electrodes. Among the investigated polymer electrolytes, PVDF-HFP-NaTFSI was found to outperform other counterparts by achieving a higher ionic conductivity and delivered an appreciable electrochemical stability window. By further delving into the properties of PVDF-HFP-NaTFSI, it was found to possess the least crystallinity, minimal porous structure, lowest melting point, and fusion enthalpy, indicating better ion transport than other investigated polymer electrolytes. The as-assembled solid-state battery revealed a storage capacity of 74 mAh g-1 at 0.1 C with a specific energy density of 130 Wh kgcathode_active_material-1 and demonstrated an impressive capacity retention of 84% of the initial capacity after 200 cycles. The structure and morphology retention of the cycled electrode and electrolyte through postmortem analysis bolster the electrochemo-mechanical stability of the developed solid cell. The findings reported here on polymer electrolytes persuade expedient solutions for developing ambient temperature solid-state sodium-ion batteries with promising electrochemical performance for commercialization in the near future.
RESUMO
Na superionic conductor (NASICON)-structured compounds demonstrate great application potential by their robust framework and compositional diversity. However, they are blamed for the mediocre energy density, and achieving both multielectron reaction and good cycling stability simultaneously is challenging. Herein, a novel heterogeneous Na4Fe3(PO4)2(P2O7)/Na2VTi(PO4)3 (NFPP/NVTP) material with stable multielectron reaction is constructed by spray drying technology. The mutual promotion effect of intergrowth structures effectively improves the purity and the crystallization of NFPP/NVTP during the fabrication process, which is beneficial to the high capacity and cycling stability. As a result, the optimized NFPP/NVTP demonstrates a high reversible capacity of 155.3 mAh g-1 at 20 mA g-1 and outstanding cycling stability with 82.9% capacity retention over 2500 cycles at 1 A g-1, which are much superior to those of NFPP and NVTP individually. Even in full cell configuration, the energy density remains high at ≈380 Wh kg-1 based on the cathode mass. The high capacity of NFPP/NVTP is also attributed to the successive reduction/oxidation mechanism involving the introduction of Ti3+ and interfacial charge redistribution effect between the heterogeneous phases, which greatly improve the electronic and ionic conductivity. Moreover, high reversible structural evolution during the multisodium storage process further guarantees excellent cycling stability.
RESUMO
Sodium batteries are considered a promising candidate for large-scale grid storage at tropical climate zone, and solid-state sodium metal batteries have a strong proposition as high energy density battery. The main challenge is to develop ultra-pure solid-state ceramic electrolyte and compatible metal interface. Here, a scalable and energy-efficient synthesis strategy of sodium (Na) Super Ionic CONductor, Na1+xZr2SixP3-xO12 (x = 2, NZSP) solid electrolyte, has been introduced with the complete removal of unreacted zirconium oxide (ZrO2) impurities. Additionally, the reaction mechanism for the formation of pure phase NZSP is reported for the first time. The NZSP prepared by utilizing the Zr precursor, i.e., tetragonal zirconium oxide (t-ZrO2) derived from the Zr(OH)4 gets quickly and completely consumed in the synthesis process leaving no unreacted monoclinic ZrO2 impurities. The synthesis process only needs a minimum stay of 4 h, which is three times less than the conventional synthesis method. The elimination of ZrO2 impurities results in a 2.5-fold reduction in grain boundary resistivity, showcasing a total ionic conductivity of 1.75 mS cm-1 at room temperature and a relative density of 98%. The prepared electrolyte demonstrates remarkable resistance to dendrite formation, as evidenced by a high critical current density value of 1.4 mA cm-2.
RESUMO
The integration of the flexibility of organic polymer electrolyte and high ionic conductivity of the ceramic electrolyte is attempted in search of efficient and safer battery. Composite solid polymer electrolyte (CSPE) provides high ionic conductivity with a sustainable thin film of electrolyte having the synergistic effect of ionic liquid and active inorganic filler. The CSPE is synthesized by the solution cast technique using Na3Zr2Si2PO12 (NZSP) as ceramic and poly(vinylidene fluoride-hexafluoropropylene) with Salt-Ionic liquid as polymer electrolyte. X-ray diffraction (XRD) of CSPE includes amorphous nature due to the polymer part as well as crystalline peaks of ceramic NZSP, simultaneously. The prepared CSPE sample shows homogeneous and interconnected surface morphology is observed by Scanning electron microscopy (SEM) image. Thermogravimetric analysis (TGA) shows electrolyte is thermally stable up to 200 °C and differential scanning calorimetry (DSC) reveals decrease in degree of crystallinity due to NZSP addition in the CSPE. By complex impedance spectroscopy (CIS), room temperature ionic conductivity of the prepared CSPE is found ~1.03â mS/cm. The dielectric behaviour of the prepared electrolyte is also studied to investigate the ion dynamics within the sample. The cationic transference number is 0.53 and the electrochemical stability window (ESW) of the CSPE is 4.9â V which is suitable for sodium solid-state batteries applications.
RESUMO
Mn-based sodium superionic conductors have driven attention to the low-cost advanced cathode materials for sodium-ion batteries (SIBs). However, low-rate capability and unsatisfactory cyclic performance due to the Jahn teller effect of Mn3+ redox couple which occurs from the change in Mn-O bond length at the octahedral site of crystal structure during charge-discharge, eventually limiting their application. Herein, a disordered and sodium deficient NASICON Na4-xMn(FeVCrTi)0.25(PO4)3 (termed as Na4-xMn(HE)) is synthesized to mitigate this Jahn teller effect to achieve high rate and ultrastable cathode material. Interestingly, the as-prepared Na3.5Mn(HE) shows five reversible electron reactions (i.e., Ti3+/Ti4+, Fe2+/Fe3+, V3+/V4+, Mn2+/Mn3+, and Mn3+/Mn4+) and demonstrates 141 mA h g-1 at 0.2 C with 80% capacity retention at 1 C after 500 cycles which is far superior to its counterparts binary Mn-based materials. The excellent cyclic performance is due to the remediation of the Jahn teller effect in sodium-deficient entropy-stabilized material. The structural reversibility, enhanced kinetics, and electronic properties are further studied in detail by in situ X-ray diffraction (XRD), ex situ X-ray photoelectron spectroscopy (XPS), and first principal calculations. Na3.5Mn(HE)//HC full cell delivered 89.7 mAh g-1 capacity at 0.2 C. This work sheds light on designing Mn-based cathodes with superior electrochemical performance for wide energy storage applications.
RESUMO
In recent years, the Na-ion SuperIonic CONductor (NASICON) based polyanionics are considered pertinent cathode materials in sodium-ion batteries due to their 3D open framework, which can accommodate a wide range of Na content and can offer high ionic conductivity with great structural stability. However, owing to the inferior electronic conductivity, these materials suffer from unappealing rate capability and cyclic stability for practical applications. Therefore, in this work we investigate the effect of Co substitution at the V site on the electrochemical performance and diffusion kinetics of Na3V2-xCox(PO4)3/C (x = 0-0.15) cathodes. All the samples are characterized through Rietveld refinement of the X-ray diffraction patterns, Raman spectroscopy, transmission electron microscopy, etc. We demonstrate improved electrochemical performance for the x = 0.05 electrode with a reversible capacity of 105 mAh g-1 at 0.1 C. Interestingly, the specific capacity of 80 mAh g-1 is achieved at 10 C with retention of about 92% after 500 cycles and 79.5% after 1500 cycles and having nearly 100% Coulombic efficiency. The extracted diffusion coefficient values through the galvanostatic intermittent titration technique and cyclic voltammetry are found to be in the range of 10-9 to 10-11 cm2 s-1. The post-mortem studies show excellent structural and morphological stability after testing for 500 cycles at 10 C. Our study reveals the role of optimal dopant of Co3+ ions at the V site in improving the cyclic stability at a high current rate.
RESUMO
Since solid electrolytes have a broad electrochemical stability window, are exceptionally electrochemically stable against Li metal, and function as a physical separator to prevent dendrite growth, they are at the forefront of alternate possibilities, further increasing the stability and energy density of Li-ion batteries. NASICON-type electrolytes are a promising candidate due to their negligible moisture sensitivity, which results in outstanding stability and a lower probability of Li2CO3 passivity under the ambient atmosphere. However, one of the most promising representatives, Li1+xYxZr2-x(PO4)3 (LYZP), has multiple stable phases with significant variation in their corresponding Li-ion conductivity. In this paper, we have successfully synthesized the highly ionically conductive rhombohedral phase of LYZP via spray-flame synthesis. Two different solvent mixtures (e.g., 2-ethyl hexanoic acid/ethanol, propanol/propanoic acid) were chosen to explore the effect of precursor composition and combustion enthalpy on the phase composition of the nanoparticle. The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline tetragonal zirconia (t-ZrO2) phase, while lithium, yttrium, and phosphate were present on the nanoparticles' surface as amorphous phases. However, a short annealing step (1 h) was sufficient to obtain the NASICON phase. Moreover, we have shown the gradual phase conversion from orthorhombic ß phase to rhombohedral α phase as the annealing temperature increased from 700 °C to 1300 °C (complete removal of ß phase). In this context, Y3+ doping was also crucial, along with the appropriate solvent mixture and annealing temperature, for obtaining the much-desired rhombohedral α phase. Further, 0.2 at% Y3+ doping was added to the solvent mixture of 2-ethyl hexanoic acid/ethanol, and annealing at 1300 °C for 1 h resulted in a high ionic conductivity of 1.14â10-5 S cm-1.
RESUMO
In advancing sodium-ion battery technology, we introduce a novel application of Na3NiZr(PO4)3 with a NASICON structure as an anode material. This research unveils, for the first time, its exceptional ability to maintain high specific capacity and unprecedented cycle stability under extreme current densities up to 1000 mA·g-1, within a low voltage window of 0.01-2.5 V. The core of our findings lies in the material's remarkable capacity retention and stability, which is a leap forward in addressing long-standing challenges in energy storage. Through cutting-edge in situ/operando X-ray diffraction analysis, we provide a perspective on the structural evolution of Na3NiZr(PO4)3 during operation, offering deep insights into the mechanisms that underpin its superior performance.
RESUMO
The Mn-based polyanion compound Na3MnTi(PO4)3 (NMTP) with a Na superionic conductor (NASICON) structure has attracted incremental attention as a potential cathode material for sodium-ion batteries. However, the occupation of Mn2+ on Na+ vacancies usually leads to severe voltage hysteresis, which in turn results in significant capacity loss, slow Na+ diffusion kinetics, and poor cycling stability. Herein, anion-substituted compounds Na3MnTi(PO4)3-x(SiO4)x (x = 0.1, 0.2, and 0.3) are synthesized. It reveals that the SiO44- substitution could induce partial oxidation of Mn2+ to Mn3+, and the latter has a lower occupancy preference on Na+ vacancies. By the proposed charge compensation strategy, the Mn2+ occupation on Na+ vacancies can be significantly suppressed. As a result, the voltage hysteresis is substantially inhibited, and greatly improved electrochemical performance is achieved. This study offers an alternative strategy to address the voltage hysteresis associated with NMTP and other Mn-based NASICON cathode materials.
RESUMO
Activating multielectron reactions of sodium superionic conductor (NASICON)-type cathodes toward higher energy density remains imperative to boost their application feasibility. However, multisodium storage with high stability is difficult to achieve due to the sluggish reaction kinetics, irreversible phase transitions, and negative structural degradation. Herein, a kind of NASICON-type Na2.5V1.5Ti0.5(PO4)3/C (NVTP-0.5) hierarchical microsphere consisting of abundant primary nanoparticles is designed, realizing a reversible 3.2-electron reaction with high stability. The optimized NVTP-0.5 cathode demonstrates an ultrahigh discharge capacity of 192.42 mAh g-1, energy density of up to 497.3 Wh kg-1 at 20 mA g-1, and capacity retention ratio of 94.1% after 1000 cycles at 1 A g-1. Additionally, the NVTP-0.5 cathode delivers excellent tolerance to extreme temperatures while also achieving a high-energy density of 400 Wh kg-1 (based on the cathode mass) in a full-cell configuration. Systematic in situ/ex situ analysis results confirm the multisodium storage processes of NVTP-0.5 involving successive redox reactions (V2+/V3+, Ti3+/Ti4+, and V3+/V4+ redox couples) and reversible structure evolution (solid-solution and biphasic mechanisms), which contribute to the high capacity and excellent cycling stability. This work indicates that the rational regulation of components with different functions can unlock more possibilities for the development of NASICON-type cathodes.
RESUMO
The Na super ionic conductor (NASICON), which has outstanding structural stability and a high operating voltage, is an appealing material for overcoming the limits of low specific energy and larger volume distortion of sodium-ion batteries. In this study, to discover ideal NASICON cathode materials, a screening platform based on density functional theory (DFT) calculations and machine learning (ML) is developed. A training database was generated utilizing the previous 124â¯545 electrode databases, and a test set of 3126 potential NASICON structures [NaxMyM'1-y(PO4)3] with 27 dopants at the metal site and 6 dopants at the polyanion central site was constructed. The developed ML surrogate model identifies 796 materials that satisfy the following criteria: formation energy of <0.0 eV/atom, energy above hull of ≤0.025 eV/atom, volume change of ≤4%, and theoretical capacity of ≥50 mAh/g. The thermodynamically stable configurations of doped NASICON structures were then selected using machine learning interatomic potential (MLIP), enabling rapid consideration of various dopant site configurations. DFT calculations are followed on 796 screened materials to obtain energy density, average voltage, and volume change. Finally, 50 candidates with an average voltage of ≥3.5 V are identified. The suggested platform accelerates the exploration for optimal NASICON materials by narrowing the focus on materials with desired properties, saving considerable resources.
RESUMO
Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers.
RESUMO
Na3MnTi(PO4)3 (NMTP) emerges as a promising cathode material with high-performance for sodium-ion batteries (SIBs). Nevertheless, its development has been limited by several challenges, including poor electronic conductivity, the Mn3+ Jahn-Teller effect, and the presence of a Na+/Mn2+ cation mixture. To address these issues, we have developed a cation/anion-dual regulation strategy to activate the redox reactions involving manganese, thereby significantly enhancing the performance of NMTP. This strategy simultaneously enhances the structural dynamics and facilitates rapid ion transport at high rates by inducing the formation of sodium vacancy. The combined effects of these modifications lead to a substantial improvement in specific capacity (79.1 mAh/g), outstanding high-rate capabilities (35.9 mAh/g at 10C), and an ultralong cycle life (only 0.040 % capacity attenuation per cycle over 250 cycles at 1C for Na3.34Mn1.2Ti0.8(PO3.98F0.02)3) when used as a cathode material in SIBs. Furthermore, its performance in full cell demonstrates impressive rate capability (44.4 mAh/g at 5C) and exceptional cycling stability (with only 0.116 % capacity decay per cycle after 150 cycles at 1C), suggesting its potential for practical applications. This work presents a dual regulation strategy targeting different sites, offering a significant advancement in the development of NASICON phosphate cathodes for SIBs.
RESUMO
Solid-state Na-CO2 batteries are a kind of energy storage devices that can immobilize and convert CO2. They have the advantages of both solid-state batteries and metal-air batteries. High-performance solid electrolyte and electrode materials are important for improving the performance of solid-state Na-CO2 batteries. In this work, we investigate the influence of fluorine doping on the structure and ionic conductivity of Na3Zr2Si2PO12 (NZSP). An ionic conductive solid electrolyte membrane was prepared by compositing the inorganic solid electrolyte Na2.7Zr2Si2PO11.7F0.3 (NZSPF3) with poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP). It shows an ionic conductivity of up to 2.17 × 10-4 S cm-1 at room temperature, a high sodium ionic transfer number of â¼0.70, a broad electrochemical window of â¼5.18 V, and better mechanical strength. Furthermore, we studied the Na15Sn4/Na composite foil with the ability to inhibit dendrite as the anode for solid-state Na-CO2 batteries. Through density functional theory (DFT) calculations, the Na15Sn4 particle has been verified with a strong sodiophilic property, which reduces the nucleation barrier during the deposition process, leading to a lower overpotential. The symmetric cell assembled with the composite solid-state electrolyte NZSPF3-PVDF-HFP and Na15Sn4/Na composite anode can inhibit the growth of Na dendrites effectively and maintain the stability of the whole cell structure. Solid-state Na-CO2 batteries assembled with Ru-carbon nanotube (Ru-CNTs) as cathode catalysts exhibit a high discharge capacity of 6371.8 mAh g-1 at 200 mA g-1, excellent cycling stability for 1100 h, and good rate performance. This work provides a promising strategy for designing high-performance solid-state Na-CO2 batteries.
RESUMO
The stable phase transformation during electrochemical progress drives extensive research on vanadium-based polyanions in sodium-ion batteries (SIBs), especially Na3V2(PO4)3 (NVP). And the electron transfer between V3+/4+ redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V4+/5+ redox couple is still in hard-to-access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities. In this work, the multilevel redox in NVP frame (MLNP) alters reaction pathway to undergo homeostatic solid solution process and breaks the high barrier of V4+/5+ at high voltage, taking by progressive transition metal (V, Fe, Ti, and Cr) redox couple. The diversified reaction paths across diffusion barriers could be realized by distinctive release/uptake of inactive Na1 site, confirmed by the calculations of density functional theory. Thereby its volume change is merely 1.73% during the multielectron-transfer process (≈2.77 electrons). MLNP cathode could achieve an impressive energy density of 440 Wh kg-1, driving the leading development of MLNP among other NASICON structure SIBs. The integration of multiple redox couples with low strain modulates the reaction pathway effectively and will open a new avenue for fabricating high-performance cathodes in SIBs.
RESUMO
Sodium-ion batteries (SIBs) are potential candidates for large energy storage usage because of the natural abundance and cheap sodium. Nevertheless, improving the energy density and cycling steadiness of SIB cathodes remains a challenge. In this work, F-doping Na3Al2/3V4/3(PO4)3(NAVP) microspheres (Na3Al2/3V4/3(PO4)2.9F0.3(NAVPF)) are synthesized via spray drying and investigated as SIB cathodes. XRD and Rietveld refinement reveal expanded lattice parameters for NAVPF compared to the undoped sample, and the successful cation doping into the Na superionic conductor (NASICON) framework improves Na+ diffusion channels. The NAVPF delivers an ultrahigh capacity of 148 mAh g-1 at 100 mA g-1 with 90.8% retention after 200 cycles, enabled by the activation of V2+/V5+ multielectron reaction. Notably, NAVPF delivers an ultrahigh rate performance, with a discharge capacity of 83.6 mAh g-1 at 5000 mA g-1. In situ XRD demonstrates solid-solution reactions occurred during charge-discharge of NAVPF without two-phase reactions, indicating enhanced structural stability after F-doped. The full cell with NAVPF cathode and Na+ preintercalated hard carbon anode shows a large discharge capacity of 100 mAh g-1 at 100 mA g-1 with 80.2% retention after 100 cycles. This anion doping strategy creates a promising SIB cathode candidate for future high-energy-density energy storage applications.
RESUMO
The development of Li-ion conducting solid-state electrolytes (SSEs) is crucial to achieve increased energy density, operative reliability, and unprecedented safety to replace the state-of-the-art Li-ion battery (LIB). In this regard, we here present the successful melt-casting synthesis of a MgO-added NASICON-type LAGP glass-ceramic electrolyte with composition Li1.5Al0.3Mg0.1Ge1.6(PO4)3, namely LAMGP. The effects of three different additional oxides are investigated, with the aim to improve grain cohesion and consequently enhance Li-ion conductivity. Specifically, yttrium oxide (Y2O3, 5 mol%), boron oxide (B2O3, 0.7 mol%) and silicon oxide (SiO2, 2.4 %mol) are added, yielding LAMGP-Y, LAMGP-B and LAMGP-Si, respectively. Their effects are exhaustively compared in terms of thermal, crystalline, structural/morphological and ion conducting features. Among the three oxides, B2O3 is able to positively act on grain boundaries without bringing along grains deformation and insulating secondary phases formation, achieving enhanced ionic conductivity of 0.21 mS cm-1 at 20 °C as compared to 0.08 mS cm-1 for a commercial LAGP subjected to the same thermal treatment. A remarkable anodic oxidation stability up to 4.8 V vs Li+/Li is assessed by LAMGP-B system, which accounts for promising prospects for its use in combination with high-energy (high-V) cathodes.