Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242510

RESUMO

α-Viniferin, a natural stilbene compound found in plants and a polymer of resveratrol, had demonstrated potential anti-cancer and anti-inflammatory effects. However, the specific mechanisms underlying its anti-cancer activity were not yet fully understood and required further investigation. This study evaluated the effectiveness of α-viniferin and ε-viniferin using MTT assay. Results showed that α-viniferin was more effective than ε-viniferin in reducing the viability of NCI-H460 cells, a type of non-small cell lung cancer. Annexin V/7AAD assay results provided further evidence that the decrease in cell viability observed in response to α-viniferin treatment was due to the induction of apoptosis in NCI-H460 cells. The present findings indicated that treatment with α-viniferin could stimulate apoptosis in cells by cleaving caspase 3 and PARP. Moreover, the treatment reduced the expression of SIRT1, vimentin, and phosphorylated AKT, and also induced AIF nuclear translocation. Furthermore, this research provided additional evidence for the effectiveness of α-viniferin as an anti-tumor agent in nude mice with NCI-H460 cell xenografts. As demonstrated by the TUNEL assay results, α-viniferin promoted apoptosis in NCI-H460 cells in nude mice.

2.
Acta Pharm ; 73(1): 145-155, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692462

RESUMO

Voltage-gated K+ (Kv) channels play a role in the cellular processes of various cancer cells, including lung cancer cells. We previously identified and reported a salivary protein from the Xenopsylla cheopis, FS48, which exhibited inhibitory activity against Kv1.1-1.3 channels when assayed in HEK 293T cells. However, whether FS48 has an inhibitory effect on cancer cells expressing Kv channels is unclear. The present study aims to reveal the effects of FS48 on the Kv channels and the NCI-H460 human lung cancer cells through patch clamp, MTT, wound healing, transwell, gelatinase zymography, qRT-PCR and WB assays. The results demonstrated that FS48 can be effective in suppressing the Kv currents, migration, and invasion of NCI-H460 cells in a dose-dependent manner, despite the failure to inhibit the proliferation. Moreover, the expression of Kv1.1 and Kv1.3 mRNA and protein were found to be significantly reduced. Finally, FS48 decreases the mRNA level of MMP-9 while increasing TIMP-1 mRNA level. The present study highlights for the first time that blood-sucking arthropod saliva-derived protein can inhibit the physiological activities of tumour cells via the Kv channels. Furthermore, FS48 can be taken as a hit compound against the tumour cells expressing Kv channels.


Assuntos
Neoplasias , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Xenopsylla , Animais , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopsylla/genética , Xenopsylla/metabolismo , Glândulas Salivares/metabolismo , RNA Mensageiro/metabolismo
3.
J Int Med Res ; 50(4): 3000605211066300, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35477254

RESUMO

OBJECTIVE: To synthesize a novel chalcone-1,3,4-thiadiazole hybrid and investigate its anticancer effects against NCI-H460 cells. METHODS: (E)-3-(4-bromophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one, 1,3-dibromopropane and 1,3,4-thiadiazole-2-thiol were used as chemical materials to synthesize compound ZW97. The NCI-H460 lung cancer cell line was selected to explore the antitumor effects of compound ZW97 in vitro and in vivo. RESULTS: Compound ZW97 selectively inhibited cell proliferation against lung cancer cell lines NCI-H460, HCC-44 and NCI-H3122 with IC50 values of 0.15 µM, 2.06 µM and 1.17 µM, respectively. ZW97 suppressed migration and the epithelial-mesenchymal transition process in NCI-H460 cells in a concentration-dependent manner. Based on the kinase activity results and docking analysis, compound ZW97 is a novel tyrosine-protein kinase Met (c-Met kinase) inhibitor. It also inhibited NCI-H460 cell growth in xenograft models without obvious toxicity to normal tissues. CONCLUSIONS: Compound ZW97 is a potential c-Met inhibitor that might be a promising agent to treat lung cancer by inhibiting the epithelial-mesenchymal transition process.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/patologia
4.
Medicines (Basel) ; 8(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199423

RESUMO

Background: ß-thujaplicin, a natural tropolone derivative, has anticancer effects on various cancer cells via apoptosis. However, the apoptosis regulatory proteins involved in this process have yet to be revealed. Methods: Trypan blue staining, a WST-8 assay, and a caspase-3/7 activity assay were used to investigate whether ß-thujaplicin sensitizes cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Additionally, western blotting was performed to clarify the effects of ß-thujaplicin on X-linked inhibitor of apoptosis protein (XIAP) in NCI-H460 cells and a fluorescence polarization binding assay was used to evaluate the binding-inhibitory activity of ß-thujaplicin against XIAP-BIR3. Results: ß- and γ-thujaplicins decreased the viability of NCI-H460 cells in a dose-dependent manner; they also sensitized the cells to TRAIL-induced cell growth inhibition and apoptosis. ß-thujaplicin significantly potentiated the apoptosis induction effect of TRAIL on NCI-H460 cells, which was accompanied by enhanced caspase-3/7 activity. Interestingly, ß-thujaplicin treatment in NCI-H460 cells decreased XIAP levels. Furthermore, ß-thujaplicin was able to bind XIAP-BIR3 at the Smac binding site. Conclusions: These findings indicate that ß-thujaplicin could enhance TRAIL-induced apoptosis in NCI-H460 cells via XIAP inhibition and degradation. Thus, the tropolone scaffold may be useful for designing novel nonpeptidic small-molecule inhibitors of XIAP and developing new types of anticancer drugs.

5.
Anticancer Res ; 36(11): 5989-5997, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27793925

RESUMO

Cantharidin (CTD), a component of natural mylabris (Mylabris phalerata Pallas), has been shown to have biological activities and induce cell death in many human cancer cells. In the present study, we investigated the effect of CTD on cell migration and invasion of NCI-H460 human lung cancer cells. Cell viability was examined and results indicated that CTD decreased the percentage of viable cells in dose-dependent manners. CTD inhibited cell migration and invasion in dose-dependent manners. Gelatin zymography analysis was used to measure the activities of matrix metalloproteinases (MMP-2/-9) and the results indicated that CTD inhibited the enzymatic activities of MMP-2/-9 of NCI-H460 cells. Western blotting was used to examine the protein expression of NCI-H460 cells after incubation with CTD and the results showed that CTD decreased the expression of MMP-2/-9, focal adhesion kinase (FAK), Ras homolog gene family, member A (Rho A), phospho-protein kinase B (AKT) (Thr308)(p-AKT(308)), phospho-extracellular signal-regulated kinase1/2 (p-ERK1/2), phospho-p38 mitogen-activated protein (MAP) kinase (p-p38), phospho c-Jun N-terminal kinase 1/2 (p-JNK1/2), nuclear factor-κB (NF-κB) and urokinase plasminogen activator (UPA). Furthermore, confocal laser microscopy was used to confirm that CTD suppressed the expression of NF-κB p65, but did not significantly affect protein kinase C (PKC) translocation in NCI-H460 cells. Based on those observations, we suggest that CTD may be used as a novel anticancer metastasis agent for lung cancer in the future.


Assuntos
Cantaridina/farmacologia , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Invasividade Neoplásica/prevenção & controle , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimologia
6.
Environ Toxicol ; 31(12): 1859-1868, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26332341

RESUMO

Nonsmall cell lung carcinoma (NSCLC) is a devastating primary lung tumor resistant to conventional therapies. Bisdemethoxycurcumin (BDMC) is one of curcumin derivate from Turmeric and has been shown to induce NSCLC cell death. Although there is one report to show BDMC induced DNA double strand breaks, however, no available information to show BDMC induced DNA damage action with inhibited DNA repair protein in lung cancer cells in detail. In this study, we tested BDMC-induced DNA damage and condensation in NCI-H460 cells by using Comet assay and DAPI staining examinations, respectively and we found BDMC induced DNA damage and condension. Western blotting was used to examine the effects of BDMC on protein expression associated with DNA damage and repair and results indicated that BDMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DDR), O6-methylguanine-DNA methyltransferase, DNA repair proteins breast cancer 1, early onset, mediator of DNA damage checkpoint 1 but activate phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Confocal laser systems microscopy was used for examining the protein translocation and results show that BDMC increased the translocation of p-p53 and p-H2A.X (phospho Ser140) from cytosol to nuclei in NCI-H460 cells. In conclusion, BDMC induced DNA damage and condension and affect DNA repair proteins in NCI-H460 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1859-1868, 2016.


Assuntos
Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Diarileptanoides , Histonas/metabolismo , Humanos , Neoplasias Pulmonares , Fosforilação , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
7.
Environ Toxicol ; 31(12): 1899-1908, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370218

RESUMO

Curcuminoids are the major natural phenolic compounds found in the rhizome of many Curcuma species. Curcuminoids consist of a mixture of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although numerous studies have shown that curcumin induced cell apoptosis in many human cancer cells, however, mechanisms of BDMC-inhibited cell growth and -induced apoptosis in human lung cancer cells still remain unclear. Herein, we investigated the effect of BDMC on the cell death via the cell cycle arrest and induction of apoptosis in NCI H460 human lung cancer cells. Flow cytometry assay was used to measure viable cells, cell cycle distribution, the productions of reactive oxygen species (ROS) and Ca2+ , mitochondrial membrane potential (ΔΨm ) and caspase-3, -8 and -9 activity. DNA damage and condension were assayed by Comet assay and DAPI staining, respectively. Western blotting was used to measure the changes of cell cycle and apoptosis associated protein expressions. Results indicated that BDMC significantly induced cell death through induced S phase arrest and induced apoptosis. Moreover, DMC induced DNA damage and condension, increased ROS and Ca2+ productions and decreased the levels of ΔΨm and promoted activities caspase-3, -8, and -9. Western blotting results showed that BDMC inhibited Cdc25A, cyclin A and E for causing S phase arrest, furthermore, promoted the expression of AIF, Endo G and PARP and the levels of Fas ligand (Fas L) and Fas were also up-regulated. Results also indicated that BDMC increased ER stress associated protein expression such as GRP78, GADD153, IRE1α, IRE1ß, ATF-6α, ATF-6ß, and caspase-4. Taken together, we suggest that BDMC induced cell apoptosis through multiple signal pathways such as extrinsic, intrinsic and ES tress pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1899-1908, 2016.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Ciclina A/metabolismo , Ciclina E/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Curcumina/farmacologia , Dano ao DNA , Diarileptanoides , Chaperona BiP do Retículo Endoplasmático , Humanos , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fase S , Transdução de Sinais/efeitos dos fármacos , Fosfatases cdc25/metabolismo
8.
In Vivo ; 29(6): 711-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26546528

RESUMO

BACKGROUND/AIM: Lung cancer is one of the most common malignancies and a predominant cause of cancer-related death. It can metastasize in almost all organs, and currently, while new cases are increasing, treatment is still insufficient. Bisdemethoxycurcumin (BDMC), one of the components of turmeric, has been known to possess biological activities. However, the effects of BDMC on the genetic level remain unclear. MATERIALS AND METHODS: Human lung cancer NCI-H460 cells were treated with 35 µM BDMC for 24 h and cells were harvested for total RNA extraction. The purified RNA was used for cDNA synthesis, labeling, microarray hybridization, and flour-labeled cDNA on-chip hybridization. The expression Console software (Affymetrix) with default RNA parameters was used to detect and quantitate concentrations of fluorescent molecules. The key genes involved and their possible interaction pathways were analyzed by the GeneGo software. RESULTS: Seven genes, such as CCNE2 (cyclin E), associated with cell cycle, were over 4-fold overexpressed, 22 genes, such as ERCC6L (excision repair cross-complementing rodent repair deficiency, complementation group 6-like) associated with DNA damage and repair, were from 3- to 4-fold overexpressed and 266, such as cell division cycle, S-phase associated kinase and associated with cell death, genes were from 2- to 3-fold overexpressed. CONCLUSION: BDMC induced changes in gene expression that may reveal cytotoxic information on the genetic level while presenting novel biomarkers or targets for treatment of human lung cancer in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Curcumina/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/biossíntese , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Curcuma/química , Curcumina/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Diarileptanoides , Humanos , Análise em Microsséries , Invasividade Neoplásica/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos
9.
Am J Chin Med ; 43(6): 1247-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26446205

RESUMO

Bufalin, a component of Chan Su (a traditional Chinese medicine), has been known to have antitumor effects for thousands of years. In this study, we investigated its anti-metastasis effects on NCI-H460 lung cancer cells. Under sub-lethal concentrations (from 25 up to 100 nM), bufalin significantly inhibits the invasion and migration nature of NCI-H460 cells that were measured by Matrigel Cell Migration Assay and Invasion System. Bufalin also suppressed the enzymatic activity of matrix metalloproteinase (MMP)-9, which was examined by gelatin zymography methods. Western blotting revealed that bufalin depressed several key metastasis-related proteins, such as NF-κB, MMP-2, MMP-9, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K), phosphorylated Akt, growth factor receptor-bound protein 2 (GRB2), phosphorylated extracellular signal-regulated kinase (ERK), phosphorylated p38, and phosphorylated c-Jun NH2-terminal kinase (JNK). As evidenced by immunostaining and the electrophoretic mobility shift assay (EMSA), bufalin induced not only a decreased cytoplasmic NF-κB production, but also decreased its nuclear translocation. Several metastasis-related genes, including Rho-associated (Rho A), coiled-coil-containing protein kinase 1 (ROCK1), and focal adhesion kinase (FAK), were down-regulated after bufalin treatment. In conclusion, bufalin is effective in inhibiting the metastatic nature of NCI-H460 cells in low, sub-lethal concentrations. Such an effect involves many mechanisms including MMPs, mitogen-activated protein kinases (MAPKs) and NF-κB systems. Bufalin has a potential to evolve into an anti-metastasis drug for human lung cancer in the future.


Assuntos
Bufanolídeos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , NF-kappa B/genética , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos
10.
Chem Biol Interact ; 240: 1-11, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26134000

RESUMO

A natural ursolic compound, 2ß, 3ß, 23-trihydroxy-urs-12-ene-28-olic acid (TUA) was isolated from the root of Actinidia chinensis Planch (A. chinensis Radix). Since a large number of triterpenoid compound has marked anticancer effects toward various types of cancer cell lines in vitro, this study was carried out to investigate the anticancer effect of TUA in non-small cell lung cancer cells (NSCLCCs) and the underlying apoptotic mechanism of TUA was examined in NCI-H460 cell lines. Cell proliferation, apoptosis and cell cycle were measured using a cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The activity of transcription factor NF-κB was determined by EMSA method. The expression of apoptosis- and proliferation-related proteins was determined by western blotting. The effect of TUA on NF-κB mRNA expression in NCI-H460 cells was detected by RT-PCR. TUA significantly suppressed the viability of NCI-H460 cells. Also, TUA significantly increased the sub G1 population by cell cycle analysis and in a concentration dependent manner in NCI-H460 cells. Such an effect was accompanied by p65 (NF-κB subunit) inactivation by an inhibition of IκBα phosphorylation, and by inhibition of p65 mRNA expressions. Consistently Overall, our findings suggest that TUA induces apoptosis via inhibition of NF-κB (p65) expression level and activation of IκBα in NCI-H460 cells as a potent anticancer candidate for lung cancer treatment.


Assuntos
Actinidia/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/genética , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico
11.
Anticancer Res ; 35(5): 2691-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25964547

RESUMO

Demethoxycurcumin (DMC) is a key component of Chinese medicine (Turmeric) and has been proven effective in killing various cancer cells. Its role in inducing cytotoxic effects in many cancer cells has been reported, but its role regarding DNA damage on lung cancer cells has not been studied in detail. In the present study, we demonstrated DMC-induced DNA damage and condensation in NCI-H460 cells by using the Comet assay and DAPI staining examinations, respectively. Western blotting indicated that DMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DNA damage response), DNA repair proteins breast cancer 1, early onset (BRCA1), O6-methylguanine-DNA methyltransferase (MGMT), mediator of DNA damage checkpoint 1 (MDC1), and p53 (tumor suppressor protein). DMC activated phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Furthermore, we used confocal laser systems microscopy to examine the protein translocation. The results showed that DMC promotes the translocation of p-p53 and p-H2A.X from the cytosol to the nuclei in NCI-H460 cells. Taken together, DMC induced DNA damage and affected DNA repair proteins in NCI-H460 cells in vitro.


Assuntos
Curcumina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Diarileptanoides , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/biossíntese
12.
In Vivo ; 29(1): 83-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25600535

RESUMO

Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 µM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Curcumina/farmacologia , Dano ao DNA/genética , Diarileptanoides , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transdução de Sinais
13.
Chem Biol Drug Des ; 85(5): 638-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25323822

RESUMO

In this study, we have synthesized novel water soluble derivatives of natural compound aloe emodin 4(a-j) by coupling with various amino acid esters and substituted aromatic amines, in an attempt to improve the anticancer activity and to explore the structure-activity relationships. The structures of the compounds were determined by (1) H NMR and mass spectroscopy. Cell growth inhibition assays revealed that the aloe emodin derivatives 4d, 4f, and 4i effectively decreased the growth of HepG2 (human liver cancer cells) and NCI-H460 (human lung cancer cells) and some of the derivatives exhibited comparable antitumor activity against HeLa (Human epithelial carcinoma cells) and PC3 (prostate cancer cells) cell lines compared to that of the parent aloe emodin at low micromolar concentrations.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Antineoplásicos/síntese química , Antraquinonas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Relação Estrutura-Atividade
14.
Environ Toxicol ; 30(10): 1135-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24639390

RESUMO

Cantharidin is one of the major compounds from mylabris and it has cytotoxic effects in many different types of human cancer cells. Previously, we found that cantharidin induced cell death through cell cycle arrest and apoptosis induction in human lung cancer NCI-H460 cells. However, cantharidin-affected DNA damage, repair, and associated protein levels in NCI-H460 cells have not been examined. In this study, we determined whether cantharidin induced DNA damage and condensation and altered levels of proteins in NCI-H460 cells in vitro. Incubation of NCI-H460 cells with 0, 2.5, 5, 10, and 15 µM of cantharidin caused a longer DNA migration smear (comet tail). Cantharidin also increased DNA condensation. These effects were dose-dependent. Cantharidin (5, 10, and 15 µM) treatment of NCI-H460 cells reduced protein levels of ataxia telangiectasia mutated (ATM), breast cancer 1, early onset (BRCA-1), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6) -methylguanine-DNA methyltransferase (MGMT), and mediator of DNA damage checkpoint protein 1 (MDC1). Protein translocation of p-p53, p-H2A.X (S140), and MDC1 from cytoplasm to nucleus was induced by cantharidin in NCI-H460 cells. Taken together, this study showed that cantharidin caused DNA damage and inhibited levels of DNA repair-associated proteins. These effects may contribute to cantharidin-induced cell death in vitro.


Assuntos
Cantaridina/toxicidade , Dano ao DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaio Cometa , Enzimas Reparadoras do DNA/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia Confocal
15.
Exp Ther Med ; 5(3): 707-710, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404433

RESUMO

Drug combination therapies are common practice in the treatment of cancer. Cisplatin is the most active chemotherapeutic agent for lung cancer treatment. Osthole is a natural compound extracted from a number of medicinal plants. To determine whether osthole enhances the anticancer effect of cisplatin in human lung cancer, we treated NCI-H460 cells with osthole alone or in combination with cisplatin and evaluated cell growth and apoptosis using 3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and fluorescence microscopy. The results showed that, in comparison with single agent treatment, the combination of osthole and cisplatin resulted in greater efficacy in growth inhibition and apoptosis induction. Western blot analysis revealed that the combination effect of osthole and cisplatin was due to regulation of the Bcl-2 family proteins. Findings of this investigation suggested that osthole combined with cisplatin is a potential clinical chemotherapeutic approach in human lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA