Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Rep Methods ; 4(9): 100858, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39255791

RESUMO

NGN2-driven induced pluripotent stem cell (iPSC)-to-neuron conversion is a popular method for human neurological disease modeling. In this study, we present a standardized approach for generating neurons utilizing clonal, targeted-engineered iPSC lines with defined reagents. We demonstrate consistent production of excitatory neurons at scale and long-term maintenance for at least 150 days. Temporal omics, electrophysiological, and morphological profiling indicate continued maturation to postnatal-like neurons. Quantitative characterizations through transcriptomic, imaging, and functional assays reveal coordinated actions of multiple pathways that drive neuronal maturation. We also show the expression of disease-related genes in these neurons to demonstrate the relevance of our protocol for modeling neurological disorders. Finally, we demonstrate efficient generation of NGN2-integrated iPSC lines. These workflows, profiling data, and functional characterizations enable the development of reproducible human in vitro models of neurological disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Neurônios , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Diferenciação Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurogênese/fisiologia , Células Cultivadas
2.
Neurobiol Dis ; 201: 106678, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307399

RESUMO

Schizophrenia (SCZ) is a psychiatric disorder with a strong genetic determinant. A major hypothesis to explain disease aetiology comprises synaptic dysfunction associated with excitatory-inhibitory imbalance of synaptic transmission, ultimately contributing to impaired network oscillation and cognitive deficits associated with the disease. Here, we studied the morphological and functional properties of a highly defined co-culture of GABAergic and glutamatergic neurons derived from induced pluripotent stem cells (iPSC) from patients with idiopathic SCZ. Our results indicate upregulation of synaptic genes and increased excitatory synapse formation on GABAergic neurons in co-cultures. In parallel, we observed decreased lengths of axon initial segments, concordant with data from postmortem brains from patients with SCZ. In line with increased synapse density, patch-clamp analyses revealed markedly increased spontaneous excitatory postsynaptic currents (EPSC) recorded from GABAergic SCZ neurons. Finally, MEA recordings from neuronal networks indicate increased strength of network activity, potentially in response to altered synaptic transmission and E-I balance in the co-cultures. In conclusion, our results suggest selective deregulation of neuronal activity in SCZ samples, providing evidence for altered synapse formation and synaptic transmission as a potential base for aberrant network synchronization.

3.
Cells ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39056804

RESUMO

Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.


Assuntos
Reprogramação Celular , Neurônios , Reprogramação Celular/genética , Humanos , Neurônios/metabolismo , Neurônios/citologia , Animais , Neurogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
4.
BMC Biol ; 22(1): 75, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566045

RESUMO

BACKGROUND: Trans-differentiation of human-induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling and in vitro assay development. Recent single-cell interrogation of Ngn2-induced neurons, however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC-derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. RESULTS: Here, we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days), and the impact of hiPSC-N/hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: https://nemoanalytics.org/p?l=DasEtAlNGN2&g=NES . CONCLUSIONS: While overall we support the use of the investigated cellular models for the study of neuropsychiatric disease, we also identify important limitations. We hope that this work will contribute to understanding and optimizing cellular modeling for complex brain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura , Astrócitos/fisiologia , Neurônios/fisiologia , Diferenciação Celular , Perfilação da Expressão Gênica
5.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38148154

RESUMO

SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Espasmos Infantis , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Fenótipo , Neurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/genética
6.
Methods Mol Biol ; 2683: 235-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300780

RESUMO

Synchronous firing of neurons, often referred to as "network activity" or "network bursting," is an indication of a mature and synaptically connected network of neurons. We previously reported this phenomenon in 2D human neuronal in vitro models (McSweeney et al. iScience 25:105187, 2022). Using induced neurons (iNs) differentiated from human pluripotent stem cells (hPSCs) coupled with high-density microelectrodes arrays (HD-MEAs), we probed the underlying patterns of neuronal activity and found irregularities in network signaling across mutant states (McSweeney et al. iScience 25:105187, 2022). Here, we describe methods for plating cortical excitatory iNs differentiated from hPSCs on top of HD-MEAs and culturing iNs to maturity, examples of representative human wild-type Ngn2-iN data, and troubleshooting tips and tricks for the experimenter interested in integrating HD-MEAs into one's research approach.


Assuntos
Neurônios , Células-Tronco Pluripotentes , Humanos , Neurônios/fisiologia , Células Cultivadas , Diferenciação Celular , Microeletrodos , Rede Nervosa/fisiologia
7.
Biochem Biophys Res Commun ; 666: 52-60, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178505

RESUMO

The generation of induced pluripotent stem cells (iPSCs) via somatic cell reprogramming allowed to have an unlimited in vitro source of patient-specific cells. This achievement has introduced a new revolutionary way to create human in vitro models and to study human diseases starting from patient's own cells, especially important for inaccessible tissues like the brain. Recently, lab-on-a-chip technology has opened new reliable alternatives to conventional in vitro models able to replicate key aspects of human physiology, thanks to the intrinsic high surface-area-to-volume ratio, which allows fine control of the cellular microenvironment. The development of automated microfluidic platforms allowed the implementation of this technology to perform high-throughput, standardized and parallelized assays, suitable for drug screenings and developing new therapeutic approaches in a cost-effective way. However, the major challenges in the broad application of automated lab-on-a-chip in biological research are the lack of production robustness and ease of use of the devices. Here, we present an automated microfluidic platform able to host the rapid conversion of human iPSCs (hiPSCs) into neurons via viral-mediated overexpression of Neurogenin 2 (NGN2) in a user-friendly manner. The design of the platform, built with multilayer soft-lithography techniques, shows easiness in the fabrication and assembly thanks to the simple geometry and experimental reproducibility at the same time. All operations are managed automatically, from the cell seeding, medium change, doxycycline-mediated neuronal induction, selection of the genetically engineered cells, and analysis of the output of differentiation, including immunofluorescence assay. Our results show a high-throughput, efficient and homogenous conversion of hiPSCs into neurons in 10 days, characterized by the expression of the mature neuronal marker MAP2 and calcium signaling. The neurons-on-chip model here described represents a fully automated loop system able to address the challenges in the field of neurological diseases modelling in vitro and improve current preclinical models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microfluídica/métodos , Reprodutibilidade dos Testes , Neurônios , Diferenciação Celular
8.
J Biol Chem ; 299(3): 102888, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634849

RESUMO

In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.


Assuntos
Biotina , Neurônios , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Biotina/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo
9.
BMC Med Genomics ; 16(1): 5, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635662

RESUMO

BACKGROUND: The X-linked PTCHD1 locus is strongly associated with autism spectrum disorder (ASD). Males who carry chromosome microdeletions of PTCHD1 antisense long non-coding RNA (PTCHD1-AS)/DEAD-box helicase 53 (DDX53) have ASD, or a sub-clinical form called Broader Autism Phenotype. If the deletion extends beyond PTCHD1-AS/DDX53 to the next gene, PTCHD1, which is protein-coding, the individuals typically have ASD and intellectual disability (ID). Three male siblings with a 90 kb deletion that affects only PTCHD1-AS (and not including DDX53) have ASD. We performed a functional analysis of DDX53 to examine its role in NGN2 neurons. METHODS: We used the clustered regularly interspaced short palindromic repeats (CRISPR) gene editing strategy to knock out DDX53 protein by inserting 3 termination codons (3TCs) into two different induced pluripotent stem cell (iPSC) lines. DDX53 CRISPR-edited iPSCs were differentiated into cortical excitatory neurons by Neurogenin 2 (NGN-2) directed differentiation. The functional differences of DDX53-3TC neurons compared to isogenic control neurons with molecular and electrophysiological approaches were assessed. RESULTS: Isogenic iPSC-derived control neurons exhibited low levels of DDX53 transcripts. Transcriptional analysis revealed the generation of excitatory cortical neurons and DDX53 protein was not detected in iPSC-derived control neurons by western blot. Control lines and DDX53-3TC neurons were active in the multi-electrode array, but no overt electrophysiological phenotype in either isogenic line was observed. CONCLUSION: DDX53-3TC mutation does not alter NGN2 neuronal function in these experiments, suggesting that synaptic deficits causing ASD are unlikely in this cell type.


Assuntos
Transtorno do Espectro Autista , RNA Helicases DEAD-box , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Transtorno do Espectro Autista/genética , RNA Helicases DEAD-box/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo
10.
Cell Rep ; 42(1): 111896, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36596304

RESUMO

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.


Assuntos
Sinais (Psicologia) , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Homeodomínio/metabolismo
11.
Methods Mol Biol ; 2495: 99-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696030

RESUMO

CRISPR/Cas9 system is a powerful genome-editing technology for studying genetics and cell biology. Safe harbor sites are ideal genomic locations for transgene integration with minimal interference in cellular functions. Gene targeting of the AAVS1 locus enables stable transgene expression without phenotypic effects in host cells. Here, we describe the strategy for targeting the AAVS1 site with an inducible Neurogenin-2 (Ngn2) donor template by CRISPR/Cas9 in hiPSCs, which facilitates generation of an inducible cell line that can rapidly and homogenously differentiate into excitatory neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Sistemas CRISPR-Cas/genética , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transgenes
12.
Neurochem Res ; 47(4): 952-966, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855047

RESUMO

The study of human neurons and their interaction with neurochemicals is difficult due to the inability to collect primary biomaterial. However, recent advances in the cultivation of human stem cells, methods for their neuronal differentiation and chimeric fluorescent calcium indicators have allowed the creation of model systems in vitro. In this paper we report on the development of a method to obtain human neurons with the GCaMP6s calcium indicator, based on a human iPSC line with the TetON-NGN2 transgene complex. The protocol we developed allows us quickly, conveniently and efficiently obtain significant amounts of human neurons suitable for the study of various neurochemicals and their effects on specific neurophysiological activity, which can be easily registered using fluorescence microscopy. In the neurons we obtained, glutamate (Glu) induces rises in [Ca2+]i which are caused by ionotropic receptors for Glu, predominantly of the NMDA-type. Taken together, these facts allow us to consider the model we have created to be a useful and successful development of this technology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Diferenciação Celular , Ácido Glutâmico/metabolismo , Humanos , Neurônios/metabolismo
13.
Stem Cell Reports ; 17(1): 14-34, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971564

RESUMO

Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a "one-glove-fits-all" approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem da Célula/genética , Terapia Baseada em Transplante de Células e Tecidos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
14.
Mol Biol (Mosk) ; 55(5): 707-733, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34671001

RESUMO

Direct reprogramming technology allows several specific types of cells, including specialized neurons, to be obtained from readily available autologous somatic cells. It presents unique opportunities for the development of personalized medicine, from in vitro models of hereditary and degenerative neurological diseases to novel neuroregenerative technologies. Over the past decade, a plethora of protocols for primary reprogramming has been published, yet reproducible generation of homogeneous populations of neuronally reprogrammed cells still remains a challenge. All existing protocols, however, use transcription factors that are involved in embryonic neurogenesis. This is presumably be the key issue for obtaining highly efficient and reproducible protocols for ex vivo neurogenesis. Analysis of the functional features of transcription factors in embryonic and adult neurogenesis may not only lead to the improvement of reprogramming protocols, but also, via cell marker analysis, can exactly determine the stage of neurogenesis that a particular protocol will reach. The purpose of this review is to characterize the general factors that play key roles in neurogenesis for the embryonic and adult periods, as well as in cellular reprogramming, and to assess correspondence of cell forms obtained as a result of cellular reprogramming to the ontogenetic series of the nervous system, from pluripotent stem cells to specialized neurons.


Assuntos
Reprogramação Celular , Fatores de Transcrição , Reprogramação Celular/genética , Neurônios , Fatores de Transcrição/genética
15.
Front Cell Dev Biol ; 9: 726866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532319

RESUMO

The H1 haplotype of the microtubule-associated protein tau (MAPT) gene is a common genetic risk factor for some neurodegenerative diseases such as progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease. The molecular mechanism causing the increased risk for the named diseases, however, remains unclear. In this paper, we present a valuable tool of eight small molecule neural precursor cell lines (smNPC) homozygous for the MAPT haplotypes (four H1/H1 and four H2/H2 cell lines), which can be used to identify MAPT-dependent phenotypes. The employed differentiation protocol is fast due to overexpression of NEUROGENIN-2 and therefore suitable for high-throughput approaches. A basic characterization of all human cell lines was performed, and their TAU and α-SYNUCLEIN profiles were compared during a differentiation time of 30 days. We could identify higher levels of conformationally altered TAU in cell lines carrying the H2 haplotype. Additionally, we found increased expression levels of α-SYNUCLEIN in H1/H1 cells. With this resource, we aim to fill a gap in neurodegenerative disease modeling with induced pluripotent stem cells (iPSC) for sporadic tauopathies.

16.
Stem Cell Reports ; 16(9): 2118-2127, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34358451

RESUMO

Human neurons engineered from induced pluripotent stem cells (iPSCs) through neurogenin 2 (NGN2) overexpression are widely used to study neuronal differentiation mechanisms and to model neurological diseases. However, the differentiation paths and heterogeneity of emerged neurons have not been fully explored. Here, we used single-cell transcriptomics to dissect the cell states that emerge during NGN2 overexpression across a time course from pluripotency to neuron functional maturation. We find a substantial molecular heterogeneity in the neuron types generated, with at least two populations that express genes associated with neurons of the peripheral nervous system. Neuron heterogeneity is observed across multiple iPSC clones and lines from different individuals. We find that neuron fate acquisition is sensitive to NGN2 expression level and the duration of NGN2-forced expression. Our data reveal that NGN2 dosage can regulate neuron fate acquisition, and that NGN2-iN heterogeneity can confound results that are sensitive to neuron type.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Transcriptoma
17.
Stem Cell Reports ; 16(7): 1777-1791, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34171285

RESUMO

Central nervous system injury and neurodegenerative diseases cause irreversible loss of neurons. Overexpression of exogenous specific transcription factors can reprogram somatic cells into functional neurons for regeneration and functional reconstruction. However, these practices are potentially problematic due to the integration of vectors into the host genome. Here, we showed that the activation of endogenous genes Ngn2 and Isl1 by CRISPRa enabled reprogramming of mouse spinal astrocytes and embryonic fibroblasts to motor neurons. These induced neurons showed motor neuronal morphology and exhibited electrophysiological activities. Furthermore, astrocytes in the spinal cord of the adult mouse can be converted into motor neurons by this approach with high efficiency. These results demonstrate that the activation of endogenous genes is sufficient to induce astrocytes into functional motor neurons in vitro and in vivo. This direct neuronal reprogramming approach may provide a novel potential therapeutic strategy for treating neurodegenerative diseases and spinal cord injury.


Assuntos
Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular , Proteínas com Homeodomínio LIM/metabolismo , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Axônios/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Isquiático/citologia , Medula Espinal/citologia , Substância Branca/citologia
18.
Front Cell Neurosci ; 15: 602888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679325

RESUMO

Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% ± 18 PAX6 positive cells) and neurons (38% ± 8 ßIIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% ± 1 ßIIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications.

19.
Neuron ; 109(2): 257-272.e14, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33238137

RESUMO

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Encéfalo/fisiologia , Bases de Dados Genéticas , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Bases de Dados Genéticas/tendências , Drosophila melanogaster , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Análise de Sequência de RNA/métodos
20.
Front Cell Neurosci ; 14: 600895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362470

RESUMO

Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA