Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.716
Filtrar
1.
Rinsho Ketsueki ; 65(7): 668-675, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39098018

RESUMO

Chimeric antigen receptor-transduced autologous T (CAR-T) cell therapy targeting CD19 has revolutionized the treatment of CD19-positive hematological tumors, including acute lymphoblastic leukemia and large B-cell lymphoma. However, despite the high response rate, many problems such as exceedingly high cost, complex logistics, insufficient speed, and manufacturing failures have become apparent. One solution for these problems is to use an allogeneic cell as an effector cell for genetic modification with CAR. Allogeneic, or "off-the-shelf", CAR-expressing immune-effector cells include 1) genome-edited, T-cell receptor (TCR) gene-deleted CAR-T cells generated using healthy adult donor T cells, 2) induced pluripotent stem cell-derived CAR-T cells, and 3) CAR NK cells. NK cells are notorious for their poor ex-vivo expansion and low susceptibility to genetic modification. In this article, I will review the current state and future prospects of allogeneic CAR cell therapies, with special reference to CAR NK cells.


Assuntos
Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Transplante Homólogo , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos
2.
Adv Exp Med Biol ; 1448: 43-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117807

RESUMO

The laboratory diagnosis of cytokine storm syndromes (CSSs), i.e., hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS), is often challenging. The laboratory features using routinely available tests lack specificity, whereas confirmatory testing is available in only few laboratories in the United States. The disease mechanisms are still largely unclear, particularly in adults. In this chapter, the pathogenesis of CSSs, their associated laboratory findings, and recommended diagnostic strategies are reviewed.


Assuntos
Síndrome da Liberação de Citocina , Linfo-Histiocitose Hemofagocítica , Síndrome de Ativação Macrofágica , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/patologia , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/patologia , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/patologia , Citocinas/metabolismo
3.
Adv Exp Med Biol ; 1448: 481-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117835

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.


Assuntos
Síndrome da Liberação de Citocina , Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Animais , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Camundongos , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Citocinas/metabolismo , Citocinas/genética , Linfócitos T Citotóxicos/imunologia , Células Matadoras Naturais/imunologia
4.
Pathology ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39127542

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.

5.
Front Immunol ; 15: 1358725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148728

RESUMO

Introduction: The immunological characteristics that could protect children with coronavirus disease 2019 (COVID-19) from severe or fatal illnesses have not been fully understood yet. Methods: Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on peripheral blood samples of 15 children (8 with COVID-19) and compared them to 18 adults (13 with COVID-19). Results: The child-adult integrated single cell data indicated that children with the disease presented a restrained response to type I interferon in most of the major immune cell types, along with suppression of upstream interferon regulatory factor and toll-like receptor expression in monocytes, which was confirmed by in vitro interferon stimulation assays. Unlike adult patients, children with COVID-19 showed lower frequencies of activated proinflammatory CD14+ monocytes, possibly explaining the rareness of cytokine storm in them. Notably, natural killer (NK) cells in pediatric patients displayed potent cytotoxicity with a rich expression of cytotoxic molecules and upregulated cytotoxic pathways, whereas the cellular senescence, along with the Notch signaling pathway, was significantly downregulated in NK cells, all suggesting more robust cytotoxicity in NK cells of children than adult patients that was further confirmed by CD107a degranulation assays. Lastly, a modest adaptive immune response was evident with more naïve T cells but less activated and proliferated T cells while less naïve B cells but more activated B cells in children over adult patients. Conclusion: Conclusively, this preliminary study revealed distinct cell frequency and activation status of major immune cell types, particularly more robust NK cell cytotoxicity in PBMC that might help protect children from severe COVID-19.


Assuntos
COVID-19 , Células Matadoras Naturais , SARS-CoV-2 , Análise de Célula Única , Humanos , COVID-19/imunologia , Criança , Adulto , SARS-CoV-2/imunologia , Masculino , Feminino , Células Matadoras Naturais/imunologia , Pré-Escolar , Adolescente , Monócitos/imunologia , Monócitos/metabolismo , Pessoa de Meia-Idade , Imunidade Adaptativa , Citotoxicidade Imunológica , Adulto Jovem , Interferon Tipo I/imunologia , Senescência Celular/imunologia
6.
Evol Bioinform Online ; 20: 11769343241272413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149137

RESUMO

Background: Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people. Objection: This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles. Methods: Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD. Results: Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified CREM, FOXP1, IRF1, NFKB2, and USF2 as potential predictors for AMD through machine learning. Conclusion: This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.

7.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125777

RESUMO

Allogeneic natural killer (NK) cell therapy has been effective in treating cancer. Many studies have tested NK cell therapy using human pluripotent stem cells (hPSCs). However, the impacts of the origin of PSC-NK cells on competence are unclear. In this study, several types of hPSCs, including human-induced PSCs (hiPSCs) generated from CD34+, CD3-CD56+, and CD56- cells in umbilical cord blood (UCB), three lines of human embryonic stem cells (hESCs, ES-1. ES-2 and ES-3) and MHC I knockout (B2M-KO)-ESCs were used to differentiate into NK cells and their capacities were analyzed. All PSC types could differentiate into NK cells. Among the iPSC-derived NK cells (iPSC-NKs) and ESC-derived NK cells (ES-NKs), 34+ iPSCs and ES-3 had a higher growth rate and cytotoxicity, respectively, ES-3 also showed better efficacy than 34+ iPSCs. B2M-KO was similar to the wild type. These results suggest that the screening for differentiation of PSCs into NK cells prior to selecting the PSC lines for the development of NK cell immunotherapy is an essential process for universal allotransplantation, including the chimeric antigen receptor (CAR).


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular
8.
Front Immunol ; 15: 1407567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100677

RESUMO

Introduction: NK cells can mediate tumor cell killing by natural cytotoxicity and by antibody-dependent cell-mediated cytotoxicity (ADCC), an anti-tumor mechanism mediated through the IgG Fc receptor CD16A (FcγRIIIA). CD16A polymorphisms conferring increased affinity for IgG positively correlate with clinical outcomes during monoclonal antibody therapy for lymphoma, linking increased binding affinity with increased therapeutic potential via ADCC. We have previously reported on the FcγR fusion CD64/16A consisting of the extracellular region of CD64 (FcγRI), a high-affinity Fc receptor normally expressed by myeloid cells, and the transmembrane/cytoplasmic regions of CD16A, to create a highly potent and novel activating fusion receptor. Here, we evaluate the therapeutic potential of engineered induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as an "off-the-shelf", antibody-armed cellular therapy product with multi-antigen targeting potential. Methods: iNK cells were generated from iPSCs engineered to express CD64/16A and an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein for cytokine independence. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells to examine in in vitro and in vivo assays using the Raji lymphoma cell line. ADCC was evaluated in real-time by IncuCyte assays and using a xenograft mouse model with high circulating levels of human IgG. Results: Our data show that CD64/16A expressing iNK cells can mediate potent anti-tumor activity against human B cell lymphoma. In particular, (i) under suboptimal conditions, including low antibody concentrations and low effector-to-target ratios, iNK-CD64/16A cells mediate ADCC, (ii) iNK-CD64/16A cells can be pre-loaded with tumor-targeting antibodies (arming) to elicit ADCC, (iii) armed iNK-CD64/16A cells can be repurposed with additional antibodies to target new tumor antigens, and (iv) cryopreserved, armed iNK-CD64/16A are capable of sustained ADCC in a tumor xenograft model under saturating levels of human IgG. Discussion: iNK-CD64/16A cells allow for a flexible use of antibodies (antibody arming and antibody targeting), and an "off-the-shelf" platform for multi-antigen recognition to overcome limitations of adoptive cell therapies expressing fixed antigen receptors leading to cancer relapse due to antigen escape variants.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Neoplasias , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais , Linfoma , Receptores de IgG , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/genética , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Linfoma/terapia , Linfoma/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/imunologia , Antígenos de Neoplasias/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Camundongos SCID
9.
Mol Ther Nucleic Acids ; 35(3): 102263, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39104868

RESUMO

mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39089930

RESUMO

BACKGROUND: Aggressive NK/T-Cell neoplasms are rare hematological malignancies characterized by the abnormal proliferation of NK or NK-like T (NK/T) cells. CD6 is a transmembrane signal transducing receptor involved in lymphocyte activation and differentiation. This study aimed to investigate the CD6 expression in these malignancies and explore the potential of targeting CD6 in these diseases. MATERIALS AND METHODS: We conducted a retrospective study with totally 41 cases to investigate the expression of CD6 by immunohistochemistry, including aggressive NK-cell leukemia/lymphoma (ANKLL: N = 10) and extranodal NK/T-cell lymphoma (ENKTL: N = 31). A novel ANKLL model was applied for proof-of-concept functional studies of a CD6 antibody-drug-conjugate (CD6-ADC) both in vitro and in animal trial. RESULTS: CD6 was expressed in 68.3% (28/41) of cases (70% (7/10) of ANKLL and 67.7% (21/31) of ENKTL). The median overall survival (OS) for ANKLL and ENTKL cases was 1 and 12 months, respectively, with no significant difference in OS based on CD6 expression (p > 0.05, Kaplan-Meier with log-rank test). In vitro exposure of the CCANKL cell line, derived from an ANKL patient, to an anti-CD6ADC resulted in dose dependent induction of apoptosis. Furthermore, CCANKL engraftment in NSG mice could be blocked by treatment with the anti-CD6 ADC. CONCLUSION: To date, this is the first report to explore the expression of CD6 in ANKLL and ENKTL and confirms its expression in the majority of cases. The in vitro and in vivo data support further investigation of CD6 as a potential therapeutic target in these aggressive NK/T-cell malignancies.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39095270

RESUMO

BACKGROUND: Surgical trauma causes immune impairment, but it is largely unknown whether surgery for cancer and benign diseases instigate comparable levels of immune inhibition. Here, we compared the impact of laparoscopic surgery on immunological biomarkers in patients with colorectal cancer (CRC) and ventral hernia (VH). METHODS: Natural Killer cell activity (NKA), leukocyte subsets, and soluble programmed death ligand 1 (sPD-L1) were measured in blood samples collected from CRC (n = 29) and VH (n = 9) patients preoperatively (PREOP) and on postoperative day (POD) 1, 3-6, 2 weeks and 3 months. NKA was evaluated by the NK Vue assay that uses the level of IFNγ as a surrogate marker of NKA. Normal NKA was defined as IFNγ > 250 pg/mL and low NKA was defined as IFNγ < 250 pg/mL. RESULTS: The CRC cohort was classified into either PREOPLOW having preoperative low NKA or PREOPHIGH having preoperative normal NKA. The median NKA of the PREOPLOW subset was only in the normal range in the POD3 months sample, whereas median NKA of the PREOPHIGH subset and the VH cohort were only low in the POD1 sample. While PREOPLOW differed from VH in the PREOP-, POD1-, and POD3-6 samples (P =.0006, P = .0181, and P = .0021), NKA in PREOPHIGH and VH differed in the POD1 samples (P = .0226). There were no apparent differences in the distribution of leukocyte subsets in the perioperative period between the cohorts. CONCLUSION: CRC patients with preoperative normal NKA and VH patients showed the same pattern of recovery in NKA, while the CRC subset with preoperative low NKA seemed to experience prolonged NK cell impairment. As low NKA is associated with recurrence, preoperative level of NKA may identify patients who will benefit from immune-enhancing therapy in the perioperative period.

12.
Curr Res Immunol ; 5: 100081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113760

RESUMO

NK cells participate in ischemia reperfusion injury (IRI) and transplant rejection. Endogenous regulatory systems may exist to attenuate NK cell activation and cytotoxicity in IRI associated with kidney transplantation. A greater understanding of NK regulation will provide insights in transplant outcomes and could direct new therapeutic strategies. Kidney tubular epithelial cells (TECs) may negatively regulate NK cell activation by their surface expression of a complex family of C-type lectin-related proteins (Clrs). We have found that Clr-b and Clr-f were expressed by TECs. Clr-b was upregulated by inflammatory cytokines TNFα and IFNγ in vitro. Silencing of both Clr-b and Clr-f expression using siRNA resulted in increased NK cell killing of TECs compared to silencing of either Clr-b or Clr-f alone (p < 0.01) and when compared to control TECs (p < 0.001). NK cells treated in vitro with soluble Clr-b and Clr-f proteins reduced their capacity to kill TECs (p < 0.05). Hence, NK cell cytotoxicity can be inhibited by Clr proteins on the surface of TECs. Our study suggests a synergistic effect of Clr molecules in regulating NK cell function in renal cells and this may represent an important endogenous regulatory system to limit NK cell-mediated organ injury during inflammation.

13.
Front Immunol ; 15: 1412378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114666

RESUMO

Production of large amounts of functional NK and CAR-NK cells represents one of the bottlenecks for NK-based immunotherapy. In this study, we developed a large-scale, reliable, and practicable NK and CAR-NK production using G-Rex 100M bioreactors, which depend on a gas-permeable membrane technology. This system holds large volumes of medium with enhanced oxygen delivery, creating conditions conducive to large-scale PBNK and CAR-NK expansions for cancer therapy. Both peripheral blood NK cells (PBNKs) and CAR-NKs expanded in these bioreactors retained similar immunophenotypes and exhibited comparable cytotoxicity towards hepatocellular carcinoma (HCC) cells akin to that of NK and CAR-NK cells expanded in G-Rex 6 well bioreactors. Importantly, cryopreservation minimally affected the cytotoxicity of NK cells expanded using the G-Rex 100M bioreactors, establishing a robust platform for scaled-up NK and CAR-NK cell production. This method is promising for the development of "off-the-shelf" NK cells, supporting the future clinical implementation of NK cell immunotherapy.


Assuntos
Reatores Biológicos , Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Células Matadoras Naturais/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Técnicas de Cultura de Células/métodos , Citotoxicidade Imunológica , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia
14.
Hum Immunol ; 85(5): 111085, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116667

RESUMO

The major histocompatibility complex (MHC) class I chain-related A (MICA) plays an important role in stress cell recognition. High polymorphisms of MICA are relevant to NKG2D binding capacity, responses of NK cells and tumor progression. In this study, MICA genotyping of 97 cholangiocarcinoma patients was performed using PCR-SSP. MICA*010 was positively associated with a corrected p-value of < 0.001 (RR=2.16 (95 % CI, 1.48-3.14)). MICA*010 was previously reported as a non-expressed allele. Thus, the expression of MICA*010 on the cell surface was studied on both MICA*010 transfected cells (HEK 293 T and L929 cells) and stimulated primary monocytes obtained from homozygous MICA*010 individuals using different clones of antibodies (1H10, 1D10, 1C3.1, 1C3.2, 6D4 and 3H5) for detection. Surprisingly, the expression of MICA*010 could be observed on both transfected cells and stimulated monocytes and effectively bound to the NKG2D-Fc fusion protein. The functional study of various MICA alleles revealed the high relative killing activity of NK cells induced by the MICA*010 transfected C1R cells, not following the previously reported rule of the M129V substitution. The structural analysis highlighted the amino acid at position 36 as another important amino acid relevant to preserving the structural integrity of the MICA protein and NKG2D binding. Our data propose a new aspect of functional MICA contributing motifs and that MICA*010 has a potential effect on NK cell functions and might be applicable to other fields of immune responses.

15.
J Ethnopharmacol ; 335: 118681, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121929

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY: The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS: Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS: The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS: These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.

16.
Am J Clin Pathol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121027

RESUMO

OBJECTIVES: Primary intestinal T-cell and natural killer-cell lymphomas (PITNKLs) are aggressive and make pathologic diagnoses in biopsy specimens challenging. We analyzed different subtypes' clinicopathologic features and treatment outcomes. METHODS: Seventy-nine PITNKL cases were characterized by clinical, morphologic, and immunohistochemical features. RESULTS: Among 79 cases of PITNKLs from 2008 to 2017 in our institution, 40 (50.63%) were extranodal NK/T-cell lymphoma, nasal type (ENKTL); 32 (40.51%) monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL); 6 (7.59%) intestinal T-cell lymphoma, not otherwise specified; and 1 (1.27%) indolent T-cell lymphoma of the gastrointestinal tract. Small intestine (n = 47) was the most common site. Monomorphic epitheliotropic intestinal T-cell lymphoma showed distinctive clinicopathologic features from other subtypes with high expression (96.88%) of spleen tyrosine kinase (SYK) and PD-L1 (87.5%) and the poorest prognosis (P < .001). CD30 was highly expressed in ENKTL (9/17, 57.94%) and irrelevant to prognosis (P > .05). CONCLUSIONS: Cases of PITNKL are biologically heterogeneous; most have a dismal prognosis. SYK and PD-L1 expression might be a significant marker for MEITL and helps differential diagnosis.

17.
Front Immunol ; 15: 1423689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040115

RESUMO

Purpose: Natural killer (NK) cells are traditionally identified by flow cytometry using a combination of markers (CD16/CD56/CD3), because a specific NK-cell marker is still missing. Here we investigated the utility of CD314, CD335 and NKp80, compared to CD16/CD56/CD3, for more robust identification of NK-cells in human blood, for diagnostic purposes. Methods: A total of 156 peripheral blood (PB) samples collected from healthy donors (HD) and patients with diseases frequently associated with loss/downregulation of classical NK-cell markers were immunophenotyped following EuroFlow protocols, aimed at comparing the staining profile of total blood NK-cells for CD314, CD335 and NKp80, and the performance of distinct marker combinations for their accurate identification. Results: NKp80 showed a superior performance (vs. CD314 and CD335) for the identification of NK-cells in HD blood. Besides, NKp80 improved the conventional CD16/CD56/CD3-based strategy to identify PB NK-cells in HD and reactive processes, particularly when combined with CD16 for further accurate NK-cell-subsetting. Although NKp80+CD16 improved the identification of clonal/tumor NK-cells, particularly among CD56- cases (53%), aberrant downregulation of NKp80 was observed in 25% of patients, in whom CD56 was useful as a complementary NK-cell marker. As NKp80 is also expressed on T-cells, we noted increased numbers of NKp80+ cytotoxic T-cells at the more advanced maturation stages, mostly in adults. Conclusion: Here we propose a new robust approach for the identification of PB NK-cells, based on the combination of NKp80 plus CD16. However, in chronic lymphoproliferative disorders of NK-cells, addition of CD56 is recommended to identify clonal NK-cells, due to their frequent aberrant NKp80- phenotype.


Assuntos
Imunofenotipagem , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/diagnóstico , Citometria de Fluxo/métodos , Adulto Jovem , Idoso , Biomarcadores , Adolescente , Proteínas Ligadas por GPI/sangue , Lectinas Tipo C , Receptores de Células Matadoras Naturais , Antígenos B7
18.
Cell Mol Life Sci ; 81(1): 307, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048814

RESUMO

Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.


Assuntos
Fator de Ligação a CCCTC , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , RNA Circular , Proteínas rab5 de Ligação ao GTP , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , RNA Circular/genética , RNA Circular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Endocitose , Endossomos/metabolismo , Camundongos , Animais
19.
Cell Mol Bioeng ; 17(3): 177-188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39050513

RESUMO

Introduction: Natural killer (NK) cell-based therapies are a promising new method for treating indolent cancer, however engineering new therapies is complex and progress towards therapy for solid tumors is slow. New methods for determining the underlying intracellular signaling driving the killing phenotype would significantly improve this progress. Methods: We combined single-cell RNA sequencing with live cell imaging of a model system of NK cell killing to correlate transcriptomic data with functional output. A model of NK cell activity, the NK-92 cell line killing of HeLa cervical cancer cells, was used for these studies. NK cell killing activity was observed by microscopy during co-culture with target HeLa cells and killing activity subsequently manually mapped based on NK cell location and Annexin V expression. NK cells from this culture system were profiled by single-cell RNA sequencing using the 10× Genomics platform, and transcription factor activity inferred using the Viper and DoRothEA R packages. Luminescent microscopy of reporter constructs in the NK cells was then used to correlate activity of inferred transcriptional activity with killing activity. Results: NK cells had heterogeneous killing activity during 10 h of culture with target HeLa cells. Analysis of the single cell sequencing data identified Nuclear Factor Kappa B (NF-κB), Signal Transducer and Activator of Transcription 1 (STAT1) and MYC activity as potential drivers of NK cell functional phenotype in our model system. Live cell imaging of the transcription factor activity found NF-κB activity was significantly correlated with past killing activity. No correlation was observed between STAT1 or MYC activity and NK cell killing. Conclusions: Combining luminescent microscopy of transcription factor activity with single-cell RNA sequencing is an effective means of assigning functional phenotypes to inferred transcriptomics data. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00812-3.

20.
Heliyon ; 10(11): e32622, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961938

RESUMO

Natural Killer (NK) cells are conventionally thought to be an indefinite part of innate immunity. However, in a specific subset of NK cells, recent data signify an extension of their "duties" in immune surveillance and response, having characteristics of adaptive immunity, in terms of persistence and cytotoxicity. These cells are known as the adaptive or memory-like NK cells, where human cytomegalovirus (HCMV) infection has been shown to drive the expansion of adaptive NKG2C+ NK cells. HCMV is a ubiquitous pathogen whose prevalence differs worldwide with respect to the socioeconomic status of countries. The adaptive NK cell subpopulation is often characterized by the upregulated expression of NKG2C, CD16, and CD2, and restricted expression of NKG2A, FCεRγ and killer immunoglobulin-like receptors (KIR), although these phenotypes may differ in different disease groups. The reconfiguration of these receptor distributions has been linked to epigenetic factors. Hence, this review attempts to appraise literature reporting markers associated with adaptive or memory-like NK cells post-HCMV infection, in relation to solid cancers and hematological malignancies. Adaptive NK cells, isolated and subjected to ex vivo modifications, have the potential to enhance anti-tumor response which can be a promising strategy for adoptive immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA