Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemistrySelect ; 8(18)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38045653

RESUMO

Tricyclic pyrone (TP) molecules have shown protection of MC65 neuroblastoma cells death induced by amyloid-ß proteins through SßC gene, a decrease of amyloid-ß peptide levels, and improvement of motor functions and memory in Alzheimer's disease mouse and rat models. Mechanistic studies suggest TP molecules modulate N-methyl-D-aspartate receptor. A short synthesis of chiral TP analogs was sought using a Pd(0)-catalyzed displacement of TP allylic acetate intermediate with sodium azide or substituted benzylamines. A three-step sequence of reactions by the treatment of 2-{(5aS,7S)-3-methyl-1-oxo-1,5a,6,7,8,9-hexahydropyrano[4,3-b]chromen-7-yl}allyl acetate (9) with (Ph3P)4Pd and sodium azide, followed by reduction with Zn-NH4OCHO and coupling with 3-fluoro-4-hydroxybenzaldehyde and NaCNBH3 was found to give TP coupling molecule, (5aS,7S)-7-(1-(3-fluoro-4-hydroxybenzylamino)prop-2-en-2-yl)-3-methyl-6,7,8,9-tetrahydropyrano[4,3-b]chromen-1(5aH)-one (2), in a good yield. An alternative shorter pathway - a two-step sequence of reactions - by the displacement of 9 by 4-(t-butyldimethylsilyloxy)-3-fluoro-benzylamine with a catalytic amount of (Ph3P)4Pd in THF followed by removal of the silyl ether protecting group gave 2, albeit in a lower chemical yield. The described syntheses should provide general procedures for the synthesis of a library of TP molecules for the discovery of anti-Alzheimer drugs.

2.
Comput Struct Biotechnol J ; 21: 11-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36514335

RESUMO

Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.

3.
Saudi Dent J ; 34(7): 565-571, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36267534

RESUMO

Purpose: This study aimed to evaluate the neuroprotective ability of the conditioned medium of stem cells from human exfoliated deciduous teeth (CM-SHED) to prevent glutamate-induced apoptosis of neural progenitors. Materials and methods: Neural progenitors were isolated from two-day-old rat brains, and the conditioned medium was obtained from a mesenchymal stem cell SHED. Four groups were examined: neural progenitor cells cultured in neurobasal medium with (N + ) and without (N-) glutamate and glycine, and neural progenitor cells cultured in CM-SHED with (K + ) and without (K-) glutamate and glycine. Results: The expression of GABA A1 receptor (GABAAR1) messenger RNA (mRNA) in neural progenitor measured by real-time quantitative PCR. GABA contents were measured by enzyme-linked immunosorbent assay, whereas the apoptosis markers caspase-3 and 7-aminoactinomycin D were analysed with a Muse® cell analyzer. The viability of neural progenitor cells in the K + group (78.05 %) was higher than the control group N- (73.22 %) and lower in the N + group (68.90 %) than in the control group. The K + group showed the highest GABA content, which significantly differed from that in the other groups, whereas the lowest content was observed in the N + group. The expression level of GABAAR1 mRNA in the K + group was the highest compared to that in the other groups. CM-SHED potently protected the neural progenitors from apoptosis. Conclusions: CM-SHED may effectively prevent glutamate-induced apoptosis of neural progenitors.

4.
Comput Struct Biotechnol J ; 19: 4517-4537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471497

RESUMO

The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer's disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 - 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 - 38.84 ± 9.64 µM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.

5.
Acta Pharm Sin B ; 11(7): 1767-1788, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386320

RESUMO

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs in vivo, achieve effective drug accumulation at the target site, enhance the therapeutic effect and meanwhile reduce the side effect. In this review, we comprehensively describe the pathophysiology of stroke, traditional treatment strategies and emerging nanomedicines, summarize the barriers and methods for transporting nanomedicine to the lesions, and illustrate the latest progress of nanomedicine in treating ischemic stroke, with a view to providing a new feasible path for the treatment of cerebral ischemia.

6.
Toxicol Rep ; 7: 583-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426239

RESUMO

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.

7.
Comput Struct Biotechnol J ; 17: 917-938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360331

RESUMO

Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.

8.
IBRO Rep ; 7: 26-33, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31360792

RESUMO

Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable advantages over that with an implanted electrode, in altering neural activities under pathological situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment of epilepsy, and the safety issues related to this practice. Animal models have been developed to foster understanding of the cellular/molecular mechanisms underlying magnetic control of epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and cellular synchronization. Clinical translation of this technology could be improved through the advancement of magnetic design, optimization of stimulation protocols, and evaluation of the long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic stimulation are of great value in facilitating this translation.

9.
EBioMedicine ; 2(7): 755-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26286205

RESUMO

Patients with systemic lupus erythematosus (SLE) experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present.


Assuntos
Autoanticorpos/metabolismo , Cognição , Receptores de N-Metil-D-Aspartato/imunologia , Percepção Espacial , Adulto , Animais , Anticorpos Antinucleares/imunologia , Membrana Celular/metabolismo , Dendritos/metabolismo , Feminino , Células HEK293 , Hipocampo/patologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Células Piramidais/metabolismo , Memória Espacial
10.
Epilepsy Behav Case Rep ; 1: 92-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25667838

RESUMO

We report, to our knowledge, the only known pediatric case with encephalopathy and significantly elevated titers of N-type voltage-gated calcium channel antibody (N-type VGCC). The patient, an 8th grader, was previously healthy and presented with a one-week history of confusion, aphasia, transient fever, headaches, and dizziness. An underlying autoimmune process was suspected because of inflammatory changes in the brain MRI and multiple focal electrographic seizures captured in the EEG in the absence of CSF pleocytosis. Within 24 h of presentation, the patient was empirically started on immune-modulatory therapy, and a full recovery was achieved within 3 months of the initial presentation. Immune therapy included high-dose intravenous (IV) methylprednisolone followed by a 2-week course of dexamethasone and 2 monthly courses of IV immunoglobulin (IVIG). He was also treated with anticonvulsants for one month. No tumor has been found to date. There is a paucity of reports on autoimmune epilepsy or encephalopathy associated with N-type VGCC. Complete resolution of brain lesion, seizure freedom, and full recovery of function following early and aggressive immunotherapy demonstrate that a high index of suspicion is crucial for early recognition and treatment of autoimmune encephalitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA