Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.224
Filtrar
1.
Biomed Pharmacother ; 180: 117481, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39316971

RESUMO

Triptolide (TP), a diterpene from Tripterygium wilfordii, exhibits potent anti-inflammatory, immunomodulatory, and antitumor properties but is limited by severe hepatotoxicity. This study investigates sex differences in TP-induced liver injury and the protective role of estradiol (E2) in modulating macrophage-mediated inflammation and hepatocyte function. An acute liver injury model was established in male and female Balb/c mice using intraperitoneal TP injection. Liver function tests, histological analyses, and immunohistochemical staining were performed. THP-1 macrophage and various liver cell lines were used to study the effects of TP and E2 in vitro. Virtual screening, molecular docking, luciferase assays, and qPCR were employed to identify potential targets and elucidate underlying mechanisms. TP caused more severe liver injury in female mice, evidenced by increased liver indices, aspartate aminotransferase (AST) levels, and extensive hepatocyte damage. TP promoted M1 macrophage polarization, enhancing inflammation, particularly in female mice. E2 mitigated TP-induced inflammatory responses by downregulating pro-inflammatory cytokines and macrophage activation markers. Molecular docking and functional assays identified Nuclear receptor subfamily 1 group I member 2 (NR1I2) as a key target mediating the protective effects of E2. The study highlights significant sex differences in TP-induced hepatotoxicity, with females being more susceptible. E2 exerts protective effects against TP-induced liver injury by modulating immune responses, presenting a potential therapeutic approach to mitigate drug-induced liver injury (DILI). Further research on NR1I2 could lead to targeted therapies for reducing drug-induced liver damage.

2.
J Dev Biol ; 12(3)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39311119

RESUMO

The NR2F family, including NR2F1, NR2F2, and NR2F6, belongs to the nuclear receptor superfamily. NR2F family members function as transcription factors and play essential roles in the development of multiple organs or tissues in mammals, including the central nervous system, veins and arteries, kidneys, uterus, and vasculature. In the central nervous system, NR2F1/2 coordinate with each other to regulate the development of specific brain subregions or cell types. In addition, NR2F family members are associated with various cancers, such as prostate cancer, breast cancer, and esophageal cancer. Nonetheless, the roles of the NR2F family in the development and diseases of the lung have not been systematically summarized. In this review, we mainly focus on the lung, including recent findings regarding the roles of the NR2F family in development, physiological function, and cancer.

3.
Proc Natl Acad Sci U S A ; 121(40): e2402368121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312666

RESUMO

There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.


Assuntos
Fator I de Transcrição COUP , Córtex Cerebral , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Fator I de Transcrição COUP/metabolismo , Fator I de Transcrição COUP/genética , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Camundongos Transgênicos , Humanos , Feminino
4.
Mol Biol Rep ; 51(1): 982, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271559

RESUMO

BACKGROUND: The Axl gene is a receptor tyrosine kinase essential for male fertility. With other Tyro3 family members, it regulates cell apoptosis and preserves the organization of seminiferous tubules. However, the regulation of the expression of Axl in testicular Sertoli cells is not entirely understood. The transcription factors NR5A1 and JUNB are involved in several male fertility mechanisms such as sex development and steroidogenesis. We hypothesize that Axl promoter activity is regulated by cooperation between JUNB and NR5A1 in Sertoli cells. METHODS AND RESULTS: Following transfections of TM4 Sertoli cells with DsiRNA interference against Axl, our results show that cell morphology may be regulated by AXL. Using transfections of expression plasmids and reporter plasmids containing the Axl promoter, we report that Axl expression is highly activated by cooperation between NR5A1 and JUNB in TM4 and 15P-1 Sertoli cells. Chromatin immunoprecipitation and luciferase reporter assays with 5' promoter deletions demonstrate that JUNB and NR5A1 are being recruited to DNA regulatory elements in the proximal region of the Axl promoter. The fourth intronic region of Axl also participates in the recruitment of JUNB. CONCLUSION: Thus, Axl expression is regulated by a cooperation between the transcription factors JUNB and NR5A1 and influences the morphology of TM4 Sertoli cells.


Assuntos
Receptor Tirosina Quinase Axl , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Células de Sertoli , Fator Esteroidogênico 1 , Fatores de Transcrição , Animais , Células de Sertoli/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica
5.
Mol Neurobiol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259438

RESUMO

An abnormal increase in the expression of nuclear receptor subfamily 6 group A member 1 (NR6A1) in the hippocampus has been reported to result in depressive-like behavior in mice. However, the role of NR6A1 in the progression of neuronal death induced by ischemic stroke remains unknown. In this study, we observed an increase in NR6A1 in neurons in both in vivo and in vitro cerebral ischemic models. We found that knocking down NR6A1 in HT-22 neuronal cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) attenuated mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Conversely, NR6A1 overexpression exacerbated neuronal damage following OGD/R. NR6A1 hindered the transcription of mitonfusin 2 (MFN2), leading to a decrease in its expression. In contrast, MFN2 conferred the protective effect of NR6A1 silencing against both mitochondrial dysfunction and ER stress. In addition, NR6A1 silencing also attenuated brain infarction, ER stress, neuronal apoptosis, and loss of MFN2 in mice subjected to middle cerebral artery occlusion/reperfusion. These findings indicate that NR6A1 is a promising target for the treatment of neuronal death following cerebral ischemia. Furthermore, these results confirm the involvement of MFN2 in the effects of NR6A1 silencing. Therefore, targeting NR6A1 has potential as a viable strategy for the treatment of ischemic stroke.

6.
Biochem Pharmacol ; 229: 116519, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236936

RESUMO

Dysregulated bone homeostasis contributes to multiple diseases including osteoporosis (OP). In this study, osteoporotic mice were successfully generated using ovariectomy to investigate the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in OP. NR3C1, identified as a significantly upregulated gene in OP using bioinformatic tools, was artificially downregulated in osteoporotic mice. NR3C1 expression was significantly elevated in the femoral tissues of osteoporotic patients, and downregulation of NR3C1 alleviated bone loss and restored bone homeostasis in osteoporotic mice, as manifested by increased ALP- and OCN-positive cells and reduced RANKL/OPG ratio. Downregulation of NR3C1 inhibited osteoclastic differentiation of RAW264.7 cells and mouse bone marrow-derived macrophages (BMDM) and promoted osteogenic differentiation of MC3T3-E1 cells. The transcription factor NR3C1 bound to the cystatin-3 (CST3) promoter to repress its transcription in both RAW264.7 and MC3T3-E1 cells. The downregulation of CST3 reversed the protective effect of NR3C1 downregulation against OP. Ubiquitin-specific-processing protease 10 (USP10)-mediated deubiquitination of NR3C1 improved NR3C1 stability. Downregulation of USP10 inhibited osteoclastic differentiation of RAW264.7 cells and BMDM while promoting osteogenic differentiation of MC3T3-E1 cells. Taken together, USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 transcription, providing an attractive therapeutic strategy to alleviate OP.

7.
Trends Biochem Sci ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277450

RESUMO

Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.

8.
Int J Biol Sci ; 20(11): 4458-4475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247823

RESUMO

This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.


Assuntos
Camundongos Knockout , Dinâmica Mitocondrial , Proteínas Mitocondriais , Mitofagia , Traumatismo por Reperfusão Miocárdica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Apoptose , Mitocôndrias Cardíacas/metabolismo
9.
Int Immunopharmacol ; 142(Pt A): 113087, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241522

RESUMO

Parkinson's Disease (PD) is a degenerative disease driven by neuroinflammation. Nuclear receptor subfamily 1 group H member 4 (NR1H4), a nuclear receptor involved in metabolic and inflammatory regulation, is found to be widely expressed in central nervous system. Previous studies suggested the protective role of NR1H4 in various diseases related to inflammation, whether NR1H4 participates in PD progression remains unknown. To investigate the role of NR1H4 in neuroinflammation regulation, especially astrocyte activation during PD, siRNA and adenovirus were used to manipulate Nr1h4 expression. RNA-sequencing (RNA-seq), quantitative real-time PCR, enzyme-linked immunosorbent assay, Chromatin immunoprecipitation and western blotting were performed to further study the underlying mechanisms. We identified that NR1H4 was down-regulated during PD progression. In vitro experiments suggested that Nr1h4 knockdown led to inflammatory response, reactive oxygen species generation and astrocytes activation whereasNr1h4 overexpressionhad the opposite effects. The results of RNA-seq on astrocytes revealed that NR1H4 manipulated neuroinflammation in a CEBPß/NF-κB dependent manner. Additionally, pharmacological activation of NR1H4 via Obeticholic acid ameliorated neuroinflammation and promoted neuronal survival. Our study first proved the neuroprotective effects of NR1H4against PD via inhibiting astrocyte activation and neuroinflammation in a CEBPß/NF-κB dependent manner.

10.
J Cancer Res Clin Oncol ; 150(9): 411, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237674

RESUMO

PURPOSE: The aim of this study was to explore the potential correlation between the nuclear receptor subfamily 3 group C member 2 (NR3C2) and outcomes of colon cancer, along with the mechanisms underlying this association. METHOD: mRNA (messenger RNA) data and clinical records pertaining to colon cancer were retrieved from The Cancer Genome Atlas (TCGA) database. The analysis of NR3C2 expression discrepancies between normal colon and tumor tissues was conducted using R software. In addition, we also studied the relationship between NR3C2 expression and prognosis, pathological parameters. The relative role of NR3C2 were further predicted through bioinformatics methods and receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of NR3C2 in colon cancer. Single-cell data from colon cancer samples in the GEO (Gene Expression Omnibus) database further investigated the mechanism of the lower survival associated with NR3C2 dysregulation. NR3C2 expression in three fresh colon cancer samples and their respective paracancer samples was determined. Furthermore, colon cancer cell models overexpressing NR3C2 and with knockdown NR3C2 were constructed by lentiviral vector transfection. Cell Counting Kit-8 assay, transplantation of tumors in nude mice and transwell assays were used to examine the proliferation, migration and invasion of colon cancer cells. The effect on the Wnt/ß-catenin pathway, activities of cellular autophagy and cell apoptosis were examined by assessing the expression levels of several key proteins, including Bcl-2, Bax, and LC3. RESULTS: We found that NR3C2 was found a significantly lower level in colon cancer tissues than in adjacent tissues, which was associated with distant and lymphatic metastases, clinical stage, and poor clinical outcome, and it was an independent prognostic factor and potential marker of colon cancer. Single-cell transcriptome data identified the subset of circulating T and B cells with high expression of NR3C2, which is involved in TNF signaling pathway. Functional experiments show that downregulation of NR3C2 resultsed in the activation of the Wnt/ß-catenin signaling pathway, and promotesd the proliferation and invasion of colon cancer cells while suppressing cell autophagy and apoptosis. CONCLUSION: NR3C2 may regulate Wnt/ß-catenin to affect the proliferation, invasion apoptosis and autophagy of colon cancer, and this axis is a potential target for the treatment of colon cancer.


Assuntos
Proliferação de Células , Neoplasias do Colo , Camundongos Nus , Invasividade Neoplásica , Via de Sinalização Wnt , Humanos , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Animais , Camundongos , Masculino , Prognóstico , Feminino , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Receptores dos Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/genética , Regulação Neoplásica da Expressão Gênica , Apoptose , beta Catenina/metabolismo , beta Catenina/genética , Pessoa de Meia-Idade , Receptores de Mineralocorticoides
11.
Reprod Domest Anim ; 59(9): e14722, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295165

RESUMO

The objective of the study was to characterise the expression patterns of the two key components of cortisol action namely HSD11B1 (11-beta-hydroxysteroid dehydrogenase type 1) and NR3C1 (nuclear receptor subfamily 3, group C, member 1, also known as the glucocorticoid receptor) in superovulation induced bovine follicles during the periovulation and subsequent corpus luteum (CL) formation. Bovine ovaries containing preovulatory follicles or CL were timely defined during induced ovulation as follows: 0 h before GnRH (Gonadotropin-releasing hormone) application, and 4, 10, 20, 25 (follicles) and 60 h (early CL) after GnRH. The low mRNA expression of HSD11B1 and NR3C1 in the follicle group before the GnRH application increased significantly in the follicle group 20 h after GnRH and remained high afterward also in the early CL group. In contrast, the high NR3C1 mRNA decreased in follicles 25 h after GnRH (close to ovulation) and significantly increased again after ovulation (early CL). Our results indicated the involvement of HSD11B1 and NR3C1 as the two key components of cortisol action in the local mechanisms coordinating final follicle maturation, ovulation, follicular-luteal transition and CL development in the cow.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corpo Lúteo , Hormônio Liberador de Gonadotropina , Folículo Ovariano , Receptores de Glucocorticoides , Animais , Feminino , Bovinos/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Hormônio Liberador de Gonadotropina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Indução da Ovulação/veterinária , Ovulação/fisiologia , Regulação da Expressão Gênica
12.
J Ginseng Res ; 48(5): 494-503, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263307

RESUMO

Background: With the prevalence of dietary supplements, the use of combinations of herbs and drugs is gradually increasing, together with the risk of drug interactions. In our clinical work, we unexpectedly found that the combination of Panax notoginseng and warfarin, which are herbs that activate blood circulation and remove blood stasis, showed antagonistic effects instead. The purpose of this study was to evaluate the drug interaction between Panax notoginseng saponins (PNS) and warfarin, the main active ingredient of Panax notoginseng, and to explore the interaction mechanism. Methods: The effects and mechanisms of PNS on the pharmacodynamics and pharmacokinetics of warfarin were explored mainly in Sprague-Dawley rats and HepG2 cells. Elisa was used to detect the concentrations of coagulation factors, HPLC-MS to detect the blood concentrations of warfarin in rats, immunoblotting was employed to examine protein levels, qRT-PCR to detect mRNA levels, cellular immunofluorescence to detect the localization of NR1I3, and dual luciferase to verify the binding of miR-214-3p and NR1I3. Results: PNS significantly accelerated warfarin metabolism and reduced its efficacy, accompanied by increased expression of NR1I3 and CYP2C9. Interference with NR1I3 rescued the accelerated metabolism of warfarin induce by PNS co-administration. In addition, we demonstrated that PNS significantly reduced miR-214-3p expression, whereas miR-214-3p overexpression reduced NR1I3 and CYP2C9 expression, resulting in a weakened antagonistic effect of PNS on warfarin. Additionally, we found that miR-214-3p bound directly to NR1I3 3'-UTR and significantly downregulated NR1I3 expression. Conclusion: Our study demonstrated that PNS accelerates warfarin metabolism and reduces its pharmacodynamics by downregulating miR-214-3p, leading to increased expression of its target gene NR1I3, these findings provide new insights for clinical drug applications to avoid adverse effects.

13.
Artigo em Russo | MEDLINE | ID: mdl-39269296

RESUMO

OBJECTIVE: To determine the significance of immunological markers in patients with obstructive sleep apnea (OSA) and comorbid pathology. MATERIAL AND METHODS: Sixty-five patients were examined. Two groups of patients were distinguished: the main group with moderate and severe OSA and the control group without OSA. The subjects underwent anthropometry, polysomnography, assessment of cognitive and emotional disorders. Glial fibrillar acidic protein (GFAP), antibodies against NR1-NR2 subunits of NMDA receptors (AT to GRIN2A) and the acetylcholine receptor (AT to AChR), and brain-derived neurotrophic factor (BDNF) were studied by enzyme immunoassay. RESULTS: In patients with OSA, indicators of markers: GFAP (p=0.017), BDNF (p=0.006), antibodies to AChR (p=0.002), as well as chronic cerebral ischemia (p=0.000), depression on the HADS (p=0.004) and the Beck scale (p=0.000), drowsiness on the Epworth scale (p=0.001), asthenia on the visual analogue scale (p=0.000) and the MFI 20 (p=0.013) were higher than in the control group. A relationship was established in the main group between the identified subjective disorders on the Mini-Mental State Examination scale (MMSE) and BDNF (r=0.302, p=0.014) and the average score on the MMSE and BDNF (r=-0.266, p=0.032). CONCLUSION: The results demonstrate the relationship of neurospecific proteins with cognitive impairment in patients with OSA. The neuromarker GFAP in patients with sleep apnea has shown itself to be a predictor of decreased neurogenesis, and BDNF as a representative marker of neuroplasticity. Large values of AT to AChR in patients with OSA may indicate possible neuromuscular transmission disorders. Along with drowsiness and asthenia, patients with OSA have changes in the emotional background, mainly due to depression. The severity of depression and the severity of asthenia increase with increasing severity of apnea and are probably associated with low levels of saturation, which in turn leads to dysregulation of the prefrontal cortex, hippocampus and amygdala.


Assuntos
Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/imunologia , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/complicações , Masculino , Fator Neurotrófico Derivado do Encéfalo/sangue , Pessoa de Meia-Idade , Feminino , Biomarcadores/sangue , Proteína Glial Fibrilar Ácida/sangue , Adulto , Polissonografia , Comorbidade , Receptores de N-Metil-D-Aspartato/imunologia , Depressão/sangue , Depressão/epidemiologia , Depressão/etiologia , Astenia , Idoso
14.
Heliyon ; 10(16): e36376, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39258214

RESUMO

Quantitative Magnetic Resonance Imaging (qMRI) offers precise measurements of the relaxation characteristics of microstructures, representing a cutting-edge method in non-destructive fruit analysis. This study aims to visualize information on changes in moisture status and distribution at the subcellular level of winter jujube. The 0.5 T nuclear magnetic imaging equipment was utilized to rapidly, non-invasively, and accurately capture the internal relaxation status of the sample with multiple-echo-imaging. By examining the signal and noise data, a simulated dataset was developed to tackle the optimization challenge of estimating parameters for the discrete relaxation model from the multiple-echo-imaging data, especially under conditions of low signal-to-noise ratio (SNR) and in the context of heteroscedastic noise. An optimal weighting factor and the T2NR truncation model have been identified to establish an effective experimental inversion strategy. Subsequently, multiple-echo-imaging can rapidly and stably yielded voxel-level maps under conditions of low signal-to-noise ratio. Utilizing this experimental approach, data from winter jujube was collected and analyzed, facilitating an exploration of water activity (T2 mapping) and associated water content (A2 mapping). Through analyzing winter jujube fruits across two maturity stages, this study elucidates the role of precise quantification and voxel-wise visualization in moisture status detection. The methodology presents an innovative approach for assessing internal moisture distribution in fruits.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39219449

RESUMO

A central aspect of type 2 diabetes is decreased functional ß-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the ß-cell. Nr4a1 expression is decreased in type 2 diabetes rodent ß-cells and type 2 diabetes patient islets. We have shown that Nr4a1 deficient mice have reduced ß-cell mass and that Nr4a1 knock-down impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 ß-cells. Here, we demonstrate that glucose concentration directly regulates ß-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 ß-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggests that Nr4a1 plays a critical role in the ß-cells response to the fed state.

16.
Stem Cell Reports ; 19(9): 1289-1303, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39178848

RESUMO

Directed differentiation of pluripotent stem cells into specialized cell types represents an invaluable tool for a wide range of applications. Here, we have exploited single-cell transcriptomic data to develop a stepwise in vitro differentiation system from mouse embryonic stem cells into adrenocortical cells. We show that during development, the adrenal primordium is embedded in an extracellular matrix containing tenascin and fibronectin. Culturing cells on fibronectin during differentiation increased the expression of the steroidogenic marker NR5A1. Furthermore, 3D cultures in the presence of protein kinase A (PKA)-pathway activators led to the formation of aggregates composed of different cell types expressing adrenal progenitor or steroidogenic markers, including the adrenocortical-specific enzyme CYP21A1. Importantly, in-vitro-differentiated cells responded to adrenocorticotropic hormone (ACTH) and angiotensin II with the production of glucocorticoids and mineralocorticoids, respectively, thus confirming the specificity of differentiation toward the adrenal lineage.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/genética , Corticosteroides/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Angiotensina II/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibronectinas/metabolismo
17.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39199147

RESUMO

Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide, and its pathophysiology is characterized by oxidative stress and inflammation. Despite extensive research, effective treatments for TBI remain elusive. Recent studies highlighted the critical interplay between TBI and circadian rhythms, but the detailed regulation remains largely unknown. Motivated by the observed sustained decrease in Rev-erbα after TBI, we aimed to understand the critical role of Rev-erbα in the pathophysiology of TBI and determine its feasibility as a therapeutic target. Using a mouse model of TBI, we observed that TBI significantly downregulates Rev-erbα levels, exacerbating inflammatory and oxidative stress pathways. The regulation of Rev-erbα with either the pharmacological activator or inhibitor bidirectionally modulated inflammatory and oxidative events, which in turn influenced neurobehavioral outcomes, highlighting the protein's protective role. Mechanistically, Rev-erbα influences the expression of key oxidative stress and inflammatory regulatory genes. A reduction in Rev-erbα following TBI likely contributes to increased oxidative damage and inflammation, creating a detrimental environment for neuronal survival and recovery which could be reversed via the pharmacological activation of Rev-erbα. Our findings highlight the therapeutic potential of targeting Rev-erbα to mitigate TBI-induced damage and improve outcomes, especially in TBI-susceptible populations with disrupted circadian regulation.

18.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119813, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142522

RESUMO

INTRODUCTION: Angiogenesis is closely related to renal fibrosis; however, its basic mechanism remains unclear. In our study, we found that nuclear receptor 4A1 (NR4A1) inhibits vascular endothelial growth factor A (VEGFA)-induced angiogenesis, ameliorating renal fibrosis. METHODS: We prepared a renal fibrosis animal model with unilateral ureteral obstruction (UUO) and NR4A1 knockdown UUO mice model, Using Human umbilical vein endothelial cells (HUVECs) to conduct all in vitro experiments. We then detected and analyzed the expression levels of NR4A1 and other genes related to angiogenesis and fibrosis. RESULTS: The angiogenesis related genes, such as VEGFA, vascular endothelial growth factor receptor-2 (VEGFR-2), endoglin (CD105), as well as the expression of fibrosis related genes that included, α-smooth muscle actin (α-SMA), Vimentin, and Collagen I are all significantly increased in the UUO rat model. In addition, the expression of NR4A1 of the kidney tissue of UUO rats was significantly reduced. Therefore, according to the above results, we speculated that angiogenesis may exacerbate renal fibrosis and NR4A1 may repress renal fibrosis by inhibiting angiogenesis. To further verify the above results, we used VEGFA to stimulate HUVECs with (or without) overexpression or knockdown of NR4A1. The results showed that with prolonged stimulation using VEGFA, the expression of NR4A1 decreases. Overexpression of NR4A1 significantly inhibits the expression of related indicators of angiogenesis and renal fibrosis. Furthermore, knockdown of NR4A1 induces endothelial cell proliferation and migration; therefore, exacerbating angiogenesis and fibrosis. Finally, the results of NR4A1 knockdown UUO mice showed that knockdown of NR4A1 can aggravating kidney damage and induce the expression of angiogenesis and renal fibrosis related indicators, while UUO can significantly induce kidney damage, angiogenesis and renal fibrosis. When knockdown of NR4A1, renal kidney damage, angiogenesis and fibrosis becomes more severe than UUO. Thus, all of these results indicate that NR4A1 can ameliorate renal fibrosis by inhibiting angiogenesis. CONCLUSIONS: NR4A1 can inhibit angiogenesis to ameliorate renal fibrosis.


Assuntos
Fibrose , Células Endoteliais da Veia Umbilical Humana , Nefropatias , Rim , Neovascularização Patológica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Obstrução Ureteral , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/complicações , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Rim/patologia , Rim/metabolismo , Rim/irrigação sanguínea , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Masculino , Modelos Animais de Doenças , Camundongos , Ratos Sprague-Dawley , Proliferação de Células , Angiogênese
19.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125645

RESUMO

Stress-induced alterations in central neuron metabolism and function are crucial contributors to depression onset. However, the metabolic dysfunctions of the neurons associated with depression and specific molecular mechanisms remain unclear. This study initially analyzed the relationship between cholesterol and depression using the NHANES database. We then induced depressive-like behaviors in mice via restraint stress. Applying bioinformatics, pathology, and molecular biology, we observed the pathological characteristics of brain cholesterol homeostasis and investigated the regulatory mechanisms of brain cholesterol metabolism disorders. Through the NHANES database, we initially confirmed a significant correlation between cholesterol metabolism abnormalities and depression. Furthermore, based on successful stress mouse model establishment, we discovered the number of cholesterol-related DEGs significantly increased in the brain due to stress, and exhibited regional heterogeneity. Further investigation of the frontal cortex, a brain region closely related to depression, revealed stress caused significant disruption to key genes related to cholesterol metabolism, including HMGCR, CYP46A1, ACAT1, APOE, ABCA1, and LDLR, leading to an increase in total cholesterol content and a significant decrease in synaptic proteins PSD-95 and SYN. This indicates cholesterol metabolism affects neuronal synaptic plasticity and is associated with stress-induced depressive-like behavior in mice. Adeno-associated virus interference with NR3C1 in the prefrontal cortex of mice subjected to short-term stress resulted in reduced protein levels of NRIP1, NR1H2, ABCA1, and total cholesterol content. At the same time, it increased synaptic proteins PSD95 and SYN, effectively alleviating depressive-like behavior. Therefore, these results suggest that short-term stress may induce cholesterol metabolism disorders by activating the NR3C1/NRIP1/NR1H2 signaling pathway. This impairs neuronal synaptic plasticity and consequently participates in depressive-like behavior in mice. These findings suggest that abnormal cholesterol metabolism in the brain induced by stress is a significant contributor to depression onset.


Assuntos
Colesterol , Depressão , Lobo Frontal , Estresse Psicológico , Animais , Masculino , Camundongos , Colesterol/metabolismo , Depressão/metabolismo , Depressão/etiologia , Modelos Animais de Doenças , Lobo Frontal/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo
20.
Biochem Biophys Res Commun ; 737: 150493, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39133986

RESUMO

(1) Currently, the survival prognosis for patients with relapsed and refractory acute myeloid leukemia (R/R AML) is extremely poor. Therefore, the exploration of novel drugs is imperative to enhance the prognosis of patients with R/R AML. The therapeutic efficacy and mechanism of Chidamide, a novel epigenetic regulatory drug, in the treatment of R/R AML remain unclear. METHODS: The mechanism of action of Chidamide has been explored in various AML cell lines through various methods such as cell apoptosis, cell cycle analysis, high-throughput transcriptome sequencing, gene silencing, and xenograft models. RESULTS: Here, we have discovered that chidamide potently induces apoptosis, G0/G1 phase arrest, and mitochondrial membrane potential depolarization in R/R AML cells, encompassing both primary cells and cell lines. Through RNA-seq analysis, we further revealed that chidamide epigenetically regulates the upregulation of differentiation-related pathways while suppressing those associated with cell replication and cell cycle progression. Notably, our screening identified NR4A3 as a key suppressor gene whose upregulation by chidamide leads to P21-dependent cell cycle arrest in the G0/G1 phase. CONCLUSIONS: We have discovered a novel epigenetic regulatory mechanism of chidamide in the treatment of relapsed and refractory acute myeloid leukemia (R/R AML).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA