Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036401

RESUMO

We recently observed that errors in gene replication and translation could be seen qualitatively to behave analogously to the impedances in acoustical and electronic energy transducing systems. We develop here quantitative relationships necessary to confirm that analogy and to place it into the context of the minimization of dissipative losses of both chemical free energy and information. The formal developments include expressions for the information transferred from a template to a new polymer, Iσ; an impedance parameter, Z; and an effective alphabet size, neff; all of which have non-linear dependences on the fidelity parameter, q, and the alphabet size, n. Surfaces of these functions over the {n,q} plane reveal key new insights into the origin of coding. Our conclusion is that the emergence and evolutionary refinement of information transfer in biology follow principles previously identified to govern physical energy flows, strengthening analogies (i) between chemical self-organization and biological natural selection, and (ii) between the course of evolutionary trajectories and the most probable pathways for time-dependent transitions in physics. Matching the informational impedance of translation to the four-letter alphabet of genes uncovers a pivotal role for the redundancy of triplet codons in preserving as much intrinsic genetic information as possible, especially in early stages when the coding alphabet size was small.


Assuntos
Códon , Impedância Elétrica , Código Genético , Modelos Genéticos , Biossíntese de Proteínas , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Algoritmos , Aminoacil-tRNA Sintetases
2.
Proteins ; 88(5): 710-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743491

RESUMO

Conversion of the free energy of NTP hydrolysis efficiently into mechanical work and/or information by transducing enzymes sustains living systems far from equilibrium, and so has been of interest for many decades. Detailed molecular mechanisms, however, remain puzzling and incomplete. We previously reported that catalysis of tryptophan activation by tryptophanyl-tRNA synthetase, TrpRS, requires relative domain motion to re-position the catalytic Mg2+ ion, noting the analogy between that conditional hydrolysis of ATP and the escapement mechanism of a mechanical clock. The escapement allows the time-keeping mechanism to advance discretely, one gear at a time, if and only if the pendulum swings, thereby converting energy from the weight driving the pendulum into rotation of the hands. Coupling of catalysis to domain motion, however, mimics only half of the escapement mechanism, suggesting that domain motion may also be reciprocally coupled to catalysis, completing the escapement metaphor. Computational studies of the free energy surface restraining the domain motion later confirmed that reciprocal coupling: the catalytic domain motion is thermodynamically unfavorable unless the PPi product is released from the active site. These two conditional phenomena-demonstrated together only for the TrpRS mechanism-function as reciprocally-coupled gates. As we and others have noted, such an escapement mechanism is essential to the efficient transduction of NTP hydrolysis free energy into other useful forms of mechanical or chemical work and/or information. Some implementation of both gating mechanisms-catalysis by domain motion and domain motion by catalysis-will thus likely be found in many other systems.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Magnésio/química , Triptofano-tRNA Ligase/química , Triptofano/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Fenômenos Biomecânicos , Domínio Catalítico , Cátions Bivalentes , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Cinética , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA