Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 14(1): 15455, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965333

RESUMO

In the present work, the inhibition performance of Viola extract based on bulk and nano size as a green corrosion inhibitor on mild steel in 0.5 M phosphoric acid and 1M hydrochloric acid solutions is investigated using different techniques (potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Optical microscopy). The gained results demonstrated that various concentrations of Viola Extract (bulk and nano) inhibited the corrosion of the alloy in both of the acid solutions. The temperature impact on corrosion rate without/with this extract was examined. Certain thermodynamic parameters were determined based on the temperature impact on inhibition and corrosion processes. The adsorption mechanism of the extract on the alloy was explored using the Langmuir adsorption isotherm. A mixed mode of adsorption was observed, wherein the nano-sized extract in 1.0 M HCl predominantly underwent chemisorption, while the bulk-sized extract in 1.0 M HCl and both bulk and nano-sized extracts in 0.5 M H3PO4 were primarily subjected to physisorption. Scanning electron microscopy (SEM) and Optical microscopy analyses were employed to scrutinize alloys' surface morphology.

2.
Environ Res ; 258: 119450, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901812

RESUMO

The fruit Pyrus communis, owing to its presence of phenolics and flavonoids, was chosen for its nanoparticle's reducing and stabilizing properties. Furthermore, the zinc metal may be nano-absorbed by the human body. As a result, the study involves synthesizing zinc oxide nanoparticles (ZnO NPs) from P. communis fruit extract using the green method. The synthesized nanoparticle was examined with a UV-visible spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). When absorption studies were performed with a UV-visible spectrophotometer, the nanoparticle exhibited a blue shift. The FTIR spectrum revealed the molecular groups present in both the fruit extract and metal. In the SEM analysis, the ZnO NPs appeared as spherical particles, agglomerated together, and of nano-size. The larger size of the ZnO NPs in DLS can be attributed to their ability to absorb water. After characterization, nanoparticles were tested for anti-diabetic (α-amylase and yeast glucose uptake activity) and anti-microbial properties. The α-amylase inhibition percentage was 46.46 ± 0.15% for 100 µg/mL, which was comparable to the acarbose inhibition percentage of 50.58 ± 0.67% at the same concentration. The yeast glucose uptake activity was 64.24 ± 0.80% at 20 mM glucose concentration, which was comparable to the standard of 78.03 ± 0.80. The nanoparticle was more effective against Gram-negative bacteria Shigella sp. and Salmonella typhi than against Gram-positive bacteria Bacillus cereus and Streptococcus pneumoniae.


Assuntos
Frutas , Hipoglicemiantes , Nanopartículas Metálicas , Extratos Vegetais , Pyrus , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Frutas/química , Nanopartículas Metálicas/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Pyrus/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana
3.
Artigo em Inglês | MEDLINE | ID: mdl-37953622

RESUMO

BACKGROUND: Nanosizing is widely recognized as an effective technique for improving the solubility, dissolution rate, onset of action, and bioavailability of poorly water-soluble drugs. To control the execution and behavior of the output product, more advanced and valuable analytical techniques are required. OBJECTIVE: The primary intent of this review manuscript was to furnish the understanding of imaging and non-imaging techniques related to nanosizing analysis by focusing on related patents. In addition, the study also aimed to collect and illustrate the information on various classical (laser diffractometry, photon correlation spectroscopy, zeta potential, laser Doppler electrophoresis, X-ray diffractometry, differential scanning calorimeter, scanning electron microscopy, transmission electron microscopy), new, and advanced analytical techniques (improved dynamic light scattering method, Brunauer-EmmettTeller method, ultrasonic attenuation, biosensor), as well as commercial techniques, like inductively coupled plasma mass spectroscopy, aerodynamic particle sizer, scanning mobility particle sizer, and matrix-assisted laser desorption/ionization mass spectroscopy, which all relate to nano-sized particles. METHODS: The present manuscript has taken a fresh look at the various aspects of the analytical techniques utilized in the process of nanosizing, and has achieved this through the analysis of a wide range of peer-reviewed literature. All summarized literature studies provide the information that can meet the basic needs of nanotechnology. RESULTS: A variety of analytical techniques related to the nanosizing process have already been established and have great potential to weed out several issues. However, the current scenarios require more relevant, accurate, and advanced analytical techniques that can minimize the time and deviations associated with different instrumental and process parameters. To meet this requirement, some new and more advanced analytical techniques have recently been discovered, like ultrasonic attenuation technique, BET technique, biosensors, etc. Conclusion: The present overview certifies the significance of different analytical techniques utilized in the nanosizing process. The overview also provides information on various patents related to sophisticated analytical tools that can meet the needs of such an advanced field. The data show that the nanotechnology field will flourish in the coming future.

4.
Helicobacter ; 28(5): e13004, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391943

RESUMO

Nano-structure Cu(II) complex [Cu(AMAB)2 ]Cl2 with Schiff base (AMAB) derived from the condensation between 4-(dimethylamino)benzaldehyde and amoxicillin trihydrate was prepared. (AMAB) Schiff base and its Cu(II) complex were identified and confirmed by different physicochemical techniques. The Schiff base (AMAB) was coordinated to copper ion through carbonyl oxygen and imine nitrogen donor sites. X-ray powder diffraction shows a cubic crystal system of the Cu(II) complex. The density functional theory was used to optimize the structure geometries of the investigated compounds. The molecular docking of the active amino acids of the investigated proteins' interactions with the tested compounds was evaluated. The bactericidal or bacteriostatic effect of the compounds was screened against some bacterial strains. The activity of Cu-chelate against Gram-negative bacteria was mainly more effective than its (AMAB) ligand and vice versa in the case of Gram-positive bacteria. The biological activity of the prepared compounds with biomolecules calf thymus DNA (CT-DNA) was determined by electronic absorption spectra and DNA gel electrophoresis technique. All studies revealed that the Cu-chelate derivative exhibited better binding affinity to both CT-DNA than the AMAB and amoxicillin itself. The anti-inflammatory effect of the designed compounds was determined by testing their protein denaturation inhibitory activity spectrophotometrically. All obtained data supported that the designed nano-Cu(II) complex with Schiff base (AMAB) is a potent bactericide against H. pylori, and exhibits anti-inflammatory activity. The dual inhibition effects of the designed compound represent a modern therapeutic approach with extended spectrum of action. Therefore, it can act as good drug target in antimicrobial and anti-inflammtory therapies. Finally, H. pylori resistance to amoxicillin is absent or rare in many countries, thus amoxicillin nanoparticles may be beneficial for countries where amoxicillin resistance is reported.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , Bases de Schiff/farmacologia , Bases de Schiff/química , Cobre/farmacologia , Cobre/química , Amoxicilina/farmacologia , Simulação de Acoplamento Molecular , Infecções por Helicobacter/tratamento farmacológico , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , DNA/química , DNA/metabolismo , Testes de Sensibilidade Microbiana
5.
Mater Today Chem ; 30: 101526, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131408

RESUMO

Disposable polypropylene medical masks are widely used to protect people from injury caused by COVID-19 worldwide. However, disposable medical masks are non-biodegradable materials, and the accumulation of waste masks can pollute the environment and waste resources without a reasonable recycling method. The aims of this study are to transform waste masks into carbon materials and to use them as a dispersant in preparing high-quality 8 mol% Y2O3-doped tetragonal zirconia nanopowders. The waste masks were carbonized to get a carbon source in the first step, then KOH was used to etch the carbon source creating a micropores structure in the carbon material after the carbon-bed heat treatment method. The resulting carbon material is a porous tube structure with a high specific surface area (1220.34 m2/g) and adsorption capacity. The as-obtained porous carbon tubes were applied as a dispersant to produce 8 mol% Y2O3-doped tetragonal zirconia nanopowders, and the resulting nanopowders owned well-dispersed and had the smallest particle size than that prepared by activated carbon as a dispersant. Besides, the sintered 8 mol% Y2O3-doped tetragonal zirconia ceramic possessed high density, which resulted in higher ionic conductivity. These findings suggest that waste face masks can be recycled to prepare high-added-value carbon materials and provide a green and low-cost method to reuse polypropylene waste materials.

6.
Environ Sci Pollut Res Int ; 30(20): 58783-58795, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36997786

RESUMO

For the first time, copper oxide-coated glass beads (CuO-GBs) were fabricated using physical vapor deposition (PVD) technology for sequestrating Pb2+ ions from solution is addressed. Compared to other coating procedures, PVD offered high-stability uniform CuO nano-layers attached with 3.0-mm glass beads. Heating of copper oxide-coated glass beads after deposition was rather necessary to achieve the best stability of the nano-adsorbent. Detection of nano-size copper oxide on the beads was made by FTIR (intense peak at 655 cm-1 for CuO bond stretching) and XRF (Cu peak at 8.0 keV). Scanning electron micrographs taken at high magnification power indicated the presence of CuO in nano-range deposited over glass beads. The maximum deposited amount of CuO on the beads was 1.1% and accomplished at the following operational conditions: internal pressure 10-5 mmHg, Ar flow rate 8.0 mL/min, voltage 84 V, pre-sputtering time 20 s, total sputtering time 10.0 min, and post-heating temperature 150 °C for 3 h. A univariate analysis indicated that the optimum Pb2+ uptake by CuO-GBs from solution was achieved at pH 7.0-8.0, 7 beads/50 mL, 120-min contact time, and 15-mg/L initial concentration. Kinetic data for Pb2+ uptake was best presented by a pseudo-second-order model with a relative prediction error of 3.2 and 5.1% for GBs and CuO-GBs, respectively. On the other hand, Pb2+ equilibrium isotherms at 25 °C were fairly presented by the Langmuir model, and the predicted saturation values were 5.48 and 15.69 mg/g for GBs and CuO-GBs, respectively. CuO and CuO-GBs had similar Pb2+ saturation values (~ 16 mg/g), although the latter demonstrated 4 times faster kinetic, thanks to fixation CuO on glass beads. Moreover, the chemical stability of copper oxide-coated glass beads was tested under different conditions. Recycling of copper oxide-coated glass beads was also investigated, and 90% of the surface was recovered using 0.01-M HNO3.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Chumbo , Cinética , Óxidos/química , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
7.
Plant Physiol Biochem ; 194: 361-373, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470151

RESUMO

Soils contaminated with rare earth elements (REEs) can damage agriculture by causing physiological disorders in plants which are evaluated as the main connection of the human food chain. A biphasic dose response with excitatory responses to low concentrations and inhibitory/harmful responses to high concentrations has been defined as hormesis. However, not much is clear about the ecological effects and potential risks of REEs to plants. For this purpose, here we showed the impacts of different concentrations of nano terbium (Tb) applications (5-10-25-50-100-250-500 mg L-1) on the accumulation of endogeneous certain ions and hormones, chlorophyll fluoresence, photochemical reaction capacity and antioxidant activity in duckweed (Lemna minor). Tb concentrations less than 100 mg L-1 increased the contents of nitrogen (N), phosphate (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), manganese (Mn2+) and iron (Fe2+). Chlorophyll fluorescence (Fv/Fm and Fv/Fo) was suppressed under 250-500 mg L-1 Tb. In addition, Tb toxicity affected the trapped energy adversely by the active reaction center of photosystem II (PSII) and led to accumulation of inactive reaction centers, thus lowering the detected level of electron transport from photosystem II (PSII) to photosystem I (PSI). On the other hand, 5-100 mg L-1 Tb enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), NADPH oxidase (NOX), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST). Tb (5-50 mg L-1) supported the maintenance of cellular redox status by promoting antioxidant pathways involved in the ascorbate-glutathione (AsA-GSH) cycle. In addition to the antioxidant system, the contents of some hormones such as indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinin (CK) and salicylic acid (SA) were also induced in the presence of 5-100 mg L-1 Tb. In addition, the levels of hydrogen peroxide (H2O2) and lipid peroxidation (TBARS) were controlled through ascorbate (AsA) regeneration and effective hormonal modulation in L. minor. However, this induction in the antioxidant system and phytohormone contents could not be resumed after applications higher than 250 mg L-1 Tb. TBARS and H2O2, which indicate the level of lipid peroxidation, increased. The results in this study showed that Tb at appropriate concentrations has great potential to confer tolerance of duckweed by supporting the antioxidant system, protecting the biochemical reactions of photosystems and improving hormonal regulation.


Assuntos
Antioxidantes , Reguladores de Crescimento de Plantas , Humanos , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Térbio/farmacologia , Peróxido de Hidrogênio/metabolismo , Hormese , Fotoquímica , Clorofila/metabolismo , Hormônios/farmacologia , Glutationa/metabolismo , Estresse Oxidativo
8.
Syst Microbiol Biomanuf ; : 1-10, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38625121

RESUMO

The conventional methods of nanoparticles synthesis led to the production of highly toxic by-products and the use of toxic chemicals that are highly expensive in nature. Thus, the recent past has witnessed a surge in green synthesis of nanoparticles as a sustainable alternative. The present study outlines the biogenic silver nanoparticles (Ag-NPs) synthesis from an aqueous extract of Chlorella minutissima. The effect of certain parameters such as the reaction mixture's pH and precursor metal solution to algal extract ratios were explored and optimized. The UV spectrophotometric analysis of Ag-NPs gave surface plasmon response maximally at 426 nm. The developed Ag-NPs were characterized using zeta potential, indicating their high stability (-21.2 mV) with a mean diameter of 73.13 nm. Results from field emission-scanning electron microscopy (FE-SEM) showed that the particles were spherical in shape. Ag-NPs synthesized using Chlorella minutissima extract could significantly inhibit the growth of both Gram-positive and Gram-negative bacterial species. The study highlights that using C. minutissima extract for Ag-NPs synthesis is a convenient and fast process for controlling the growth of Gram-positive as well as Gram-negative bacteria.

9.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080492

RESUMO

Nanoliposomes, bilayer vesicles at the nanoscale, are becoming popular because of their safety, patient compliance, high entrapment efficiency, and prompt action. Several notable biological activities of natural essential oils (EOs), including fungal inhibition, are of supreme interest. As developed, multi-compositional nanoliposomes loaded with various concentrations of clove essential oil (CEO) and tea tree oil (TTO) were thoroughly characterized to gain insight into their nano-size distribution. The present work also aimed to reconnoiter the sustainable synthesis conditions to estimate the efficacy of EOs in bulk and EO-loaded nanoliposomes with multi-functional entities. Following a detailed nano-size characterization of in-house fabricated EO-loaded nanoliposomes, the antifungal efficacy was tested by executing the mycelial growth inhibition (MGI) test using Trichophyton rubrum fungi as a test model. The dynamic light scattering (DLS) profile of as-fabricated EO-loaded nanoliposomes revealed the mean size, polydispersity index (PdI), and zeta potential values as 37.12 ± 1.23 nm, 0.377 ± 0.007, and -36.94 ± 0.36 mV, respectively. The sphere-shaped morphology of CEO and TTO-loaded nanoliposomes was confirmed by a scanning electron microscope (SEM). The existence of characteristic functional bands in all tested counterparts was demonstrated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Compared to TTO-loaded nanoliposomes, the CEO-loaded nanoliposomes exhibited a maximum entrapment efficacy of 91.57 ± 2.5%. The CEO-loaded nanoliposome fraction, prepared using 1.5 µL/mL concentration, showed the highest MGI of 98.4 ± 0.87% tested against T. rubrum strains compared to the rest of the formulations.


Assuntos
Óleos Voláteis , Syzygium , Antifúngicos/química , Antifúngicos/farmacologia , Óleo de Cravo/farmacologia , Composição de Medicamentos , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Syzygium/química
10.
J Phys Condens Matter ; 34(46)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36103871

RESUMO

Tm1-xYbxB12dodecaborides represent model objects for the studies of quantum critical behavior, metal-insulator transitions (MITs) and complex charge-spin-orbital-phonon coupling phenomena. In spite of intensive investigations, the mechanism of semiconducting ground state formation both in YbB12and in the Yb-based strongly correlated electron systems remains a subject of active debates. We have performed first systematic measurements of temperature-dependent spectra of infrared conductivity of Tm0.19Yb81B12at frequencies 40-35 000 cm-1and in the temperature range 10-300 K. Analysis of the temperature evolution of the observed absorption resonances is performed allowing to associate these with the cooperative dynamic Jahn-Teller instability of the boron sub-lattice. This ferrodistortive effect of B12-complexes induces the rattling modes of the rare earth ions leading to emergence of both the intra-gap mixed-type collective excitations and the dynamic charge stripes. We estimate the temperature-dependent effective mass of charge carriers and propose the scenario of transformation of the many-body states in the multiple relaxation channels. We attribute the MIT to the localization of electrons at the vibrationally coupled Yb-Yb pairs, which is accompanied by the electronic phase separation and formation of the nanoscale filamentary structure of electron density (stripes) in Tm1-xYbxB12compounds.

11.
Drug Deliv ; 29(1): 364-373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35068278

RESUMO

The aim of this work was to formulate glimepiride (class II drug) which is characterized by low solubility and high permeability as nanostructured particles using a cryogenic technique with an aid of water-soluble polymer to improve its aqueous solubility and hence its bioavailability. 27 formula of glimepiride nano size particles were prepared by a spray freezing into cryogenic liquid (SCFL) using poly vinyl pyrrolidone K-30 (PVP K-30); that three drug polymer ratio (1:1, 1:2, and 1:3), with three different volumes of feeding solution (50, 100, 150 mL), at three flow rates (10, 20, and 30 mL/min). The prepared formulations were evaluated for production yield, particle size, zeta potential, drug content, release rate, in vivo hypoglycemic activity, and bioavailability. All prepared formulations showed high production yield and drug content ranged between 91.1 ± 3.4% and 94.3 ± 1.8% and 95.1 ± 2.8% and 97.1 ± 2.5%, respectively. The mean particles size was ranged between 280 ± 62 nm and 520 ± 30 nm. The results of in vitro release study revealed significant enhancement in the solubility of prepared formulations compared with the pure drug. It was found that optimal formula showed a significant reduction in blood glucose levels in diabetic rats, and 1.79-fold enhancements in oral bioavailability compared with market tablets. Nanoparticle prepared by SCFL method is an encouraging formula for improving the solubility and the bioavailability of glimepiride.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Compostos de Sulfonilureia/administração & dosagem , Compostos de Sulfonilureia/farmacologia , Animais , Área Sob a Curva , Glicemia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Congelamento , Hipoglicemiantes/farmacocinética , Masculino , Taxa de Depuração Metabólica , Nanopartículas/química , Tamanho da Partícula , Povidona/química , Ratos , Ratos Wistar , Solubilidade , Compostos de Sulfonilureia/farmacocinética , Propriedades de Superfície , Comprimidos , Tecnologia Farmacêutica
12.
Environ Sci Pollut Res Int ; 29(6): 9173-9192, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498176

RESUMO

Magnetic nano-size copper iron binary oxide is synthesized via a sol-gel method using copper and iron nitrates as precursors and citric acid, chicken egg white, and starch as stabilizers followed by annealing at 400 °C and 800 °C in air. The TG-DTG, XRD, FESEM, EDX, VSM, and FT-IR and UV-Vis DRS spectroscopy methods are used for thermal, structural, magnetic, and optoelectronic characterizations. Depending on the stabilizer and annealing temperature, pure CuFe2O4, (CuFe2O4,CuO) or (CuFe2O4,CuO,Fe2O3) phases are formed with nano-size particles of 20-65 nm, having optical band gaps in the range of 2.15-2.60 eV (577-477 nm). Photocatalytic activities of the synthesized nano-size copper iron binary oxide samples are examined for degradation of Nile Blue textile dye displayed first-cycle removal (from water solution) efficiencies of 86.7-93.3%. Considering usage of non-toxic metals and low-cost green stabilizers, good degradation performances, and easy/efficient (magnetic) recyclability, this nano-size catalyst is suggested for further optimization studies for industrial applications.


Assuntos
Cobre , Ferro , Catálise , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947799

RESUMO

The nano-size effects of high-Tc cuprate superconductor La2-xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (µSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The µSR measurements revealed the slowing down of Cu spin fluctuations in La2-xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2-xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.

14.
Anim Nutr ; 7(4): 1024-1030, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738032

RESUMO

This study aimed to evaluate role of nano-sized zinc (Zn) on lactation performance, health status, and mammary permeability of lactating dairy cows. Thirty multiparous dairy cows with similar days in milk (158 ± 43.2) and body weight (694 ± 60.5 kg) were chosen based on parity and milk production and were randomly assigned to 3 treatment groups: basal diet (control, 69.6 mg/kg of Zn adequate in Zn requirement), basal diet additional Zn-methionine (Zn-Met, providing 40 mg/kg of Zn), and basal diet additional nano-sized Zn oxide (nZnO, providing 40 mg/kg of Zn). The study lasted for 10 wk, with the first 2 wk as adaptation. Feed intake, milk yield and the related variables, and plasma variables were determined every other week. Blood hematological profiles were determined in the 8th week of the study. We found that feed intake, milk yield, and milk composition were similar across the 3 groups. The nZnO- and Zn-Met-fed cows had greater milk Zn concentrations in the milk (3.89 mg/L (Zn-Met) and 3.93 mg/L (nZnO)) and plasma (1.25 mg/L (Zn-Met) and 1.29 mg/L (nZnO)) than the control cows (3.79 mg/L in milk and 1.21 mg/L in plasma). The nZnO-fed cows had higher Zn concentrations in plasma but not in milk compared to Zn-Met-fed cows. The Zn appearance in milk was greater in nZnO-fed (area under curve during the first 4 h post-feeding for milk Zn: 16.1 mg/L) and Zn-Met-fed cows (15.7 mg/L) than in control cows (15.0 mg/L). During the first 4 h post-feeding, milk to blood Zn ratio was greater in nZnO-fed animals but lower in Zn-Met-fed cows compared with control cows. Oxidative stress-related variables in plasma, blood hematological profiles, and mammary permeability related variables were not different across treatments. In summary, lactation performance, Zn concentrations in milk and plasma, hematological profiles, mammary permeability were similar in cows fed nZnO and Zn-Met. We therefore suggested that nZnO feeding can improve Zn bioavailability without impairing lactation performance, health status, and mammary gland permeability in dairy cows.

15.
Food Chem ; 351: 129335, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33662910

RESUMO

The effect of hydrolysis degree of gallotannins (GT, 1 mg/g) on cross-linking of nano-size collagen catalyzed by laccase (12 U/g) was studied, and the antibacterial properties of GT hydrolysates (HGT)-laccase (Lac) collagen films on minced cod were also investigated. The results showed that the tensile strength of HGT-Lac films (87.23-100.77 MPa) was higher than those added HGT alone (85.59-95.58 MPa) under the same hydrolysis degree of GT. Compared to the denaturation temperature (78.05 °C) of pure nano-size collagen film without addition of HGT and laccase, the denaturation temperature of HGT (80.75-86.30 °C) and HGT-Lac (91.97-101.64 °C) films increased greatly, especially for HGT-Lac films. Moreover, both HGT and HGT-Lac films showed some mild antibacterial properties for minced cod during storage at 4 °C for 8 days. Therefore, the combination of HGT and laccase could improve the performance of nano-size collagen film and extend the application of collagen in biodegradable/edible packaging.


Assuntos
Biocatálise , Colágeno/química , Colágeno/metabolismo , Taninos Hidrolisáveis/química , Lacase/metabolismo , Filmes Comestíveis , Temperatura , Resistência à Tração
16.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379217

RESUMO

Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.


Assuntos
Corantes/efeitos adversos , Exposição Dietética/efeitos adversos , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Animais , Corantes/química , Corantes/farmacocinética , Humanos , Nanopartículas/química , Titânio/química , Titânio/farmacocinética , Testes de Toxicidade
17.
Entropy (Basel) ; 22(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33286835

RESUMO

Nano-size machines are moving from only being topics of basic research to becoming elements in the toolbox of engineers, and thus the issue of optimally controlling their work cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in thermodynamic engines and their optimal control in minimizing entropy or excess heat production in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal, and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal control problem, we show that the minimal thermodynamic length criterion of optimality for finite-time processes also applies to these cycles for general statistical mechanical systems that can be controlled by a parameter κ, and we derive an appropriate metric in probability distribution space. We show how the general formulas we have obtained for the thermodynamic length are simplified for the case of the hydrogen atom-like system, and compute the optimal distribution of process times for a two-state approximation of the hydrogen atom-like system.

18.
Int J Nanomedicine ; 15: 4225-4236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606674

RESUMO

INTRODUCTION: The aim of the study was to optimize the processing factors of precipitation-ultrasonication technique to prepare nano-sized particles of Lovastatin (LA) for enhancing its solubility, dissolution rate and in vivo bioavailability. METHODS: LA nanoparticles (LANs) were prepared using precipitation-ultrasonication technique under different processing factors. LANs were characterized in terms of particle size, zeta potential and in vitro release. Stability studies at 4°C, 25°C and 40°C were conducted for optimum formulation. In addition, the in vivo bioavailability of the optimum formula was studied in comparison to a marketed product in white master rats. RESULTS: The optimized LAN formula (LAN15) had particle size (190±15), polydispersity index (0.626±0.11) and a zeta potential (-25±1.9 mV). The dissolution study of the nanosuspensions showed significant enhancement compared with pure drug. After 50 min, only 20.12±1.85% of LA was dissolved while 99.1±1.09% of LA was released from LAN15. Stability studies verified that nanosuspensions at 4°C and 25°C showed higher stability with no particle growth compared to the samples studied at 40°C. In vivo studies conducted in rats verified that there was 1.45-fold enhancement of Cmax of LAN15 as compared to marketed tablets. CONCLUSION: Nanoparticle prepared by ultrasonication-assisted precipitation method is a promising formula for enhancing the solubility and hence the bioavailability of Lovastatin.


Assuntos
Lovastatina/farmacologia , Nanopartículas/química , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Lovastatina/sangue , Lovastatina/química , Lovastatina/farmacocinética , Masculino , Tamanho da Partícula , Ratos Wistar , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Suspensões
19.
Daru ; 28(1): 271-280, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32303981

RESUMO

BACKGROUND: Inkjet method has been used to produce nano-sized liposomes with a uniform size distribution. However, following the production of liposomes by inkjet method, the solvent residue in the product could have a significant effect on the properties of the final liposomes. OBJECTIVE: This research paper aimed to find a suitable method to remove ethanol content and to study its effect on the properties of the final liposomal suspension. METHOD: Egg phosphatidylcholine and lidocaine were dissolved in ethanol; and inkjet method at 80 kHz was applied to produce uniform droplets, which were deposited in an aqueous solution to form liposomes. Dry nitrogen gas flow, air-drying, and rotary evaporator were tested to remove the ethanol content. Liposome properties such as size, polydispersity index (PDI), and charge were screened before and after ethanol evaporation. RESULTS: Only rotary evaporator (at constant speed and room temperature for 2 h) removed all of the ethanol content, with a final drug entrapment efficiency (EE) of 29.44 ± 6.77%. This was higher than a conventional method. Furthermore, removing ethanol led to liposome size reduction from approximately 200 nm to less than 100 nm in most samples. Additionally, this increased the liposomal net charge, which contributed to maintain the uniform and narrow size distribution of liposomes. CONCLUSION: Nano-sized liposomes were produced with a narrow PDI and higher EE compared to a conventional method by using an inkjet method. Moreover, rotary evaporator for 2 h reduced effectively the ethanol content, while maintaining the narrow size distribution. Graphical abstract.


Assuntos
Etanol/química , Lipossomos/química , Solventes/química , Tecnologia Farmacêutica/métodos , Liberação Controlada de Fármacos , Tinta , Nanopartículas/química , Volatilização
20.
R Soc Open Sci ; 7(1): 191539, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218970

RESUMO

Nano-size EVONIK AEROXIDE® P25 titanium dioxide, TiO2, powder was heat-treated at temperatures, 700-900°C, in air. An X-ray diffraction study showed that the P25 powder is composed of approximately 20 and approximately 80 mass% of rutile and anatase phases, respectively. It was also shown that the transformation from anatase to rutile induced by high-temperature heat treatment was almost completed at 750°C, whereas a small amount (less than 3 mass%) of anatase phase was still left even in the powder heat-treated at 900°C. The transformation behaviour was consistent with results obtained by Raman scattering spectroscopy. Raman experiments also indicated that high-temperature heating induced the formation of oxide ion vacancies. Powders were dispersed in methyl orange (MO) aqueous solution, and the bleach rate of MO was measured to evaluate photocatalytic activity under ultraviolet (UV)- and visible-light irradiation. After the heat treatment, the UV-light photocatalytic performance sharply deteriorated. Interestingly, visible-light photocatalytic activity was enhanced by high-temperature heating and reached the highest performance for an 800°C-heated sample, indicating that the P25 powder obtained high visible-light photocatalytic performance after heat treatment. Even after 900°C heat treatment, the photocatalytic performance was higher than that of as-received powder. Enhancement of photocatalytic activities was discussed in relation to visible light absorption and charge carrier transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA