RESUMO
The NanoLuc split luciferase assay has proven to be a powerful tool for the analysis of protein translocation. Its flexibility has enabled in vivo, ex vivo, and in vitro studies-including systems reconstituting protein transport from pure components. The assay has been particularly useful in the characterization of bacterial secretion and mitochondrial protein import. In the latter case, MitoLuc has been developed for the investigation of the TIM23-pathway via import into the matrix of isolated yeast mitochondria. Subsequent analysis identified three distinct phases of import, rather than in a single continuous step. The assay has also been developed to monitor import into the mitochondrial matrix of intact cultured cells. This latter innovation has laid the foundations for further analysis of the import process in humans, including the consequences of interactions with cytosolic factors and neighboring organelles. The versatility of the MitoLuc assay is conducive for its adaptation to also monitor import into the inter-membrane space (MIA-pathway), and into the inner-membrane via the TIM22- and TIM23-complexes. Here, we present detailed protocols for the application of MitoLuc to mitochondria isolated from yeast and to those within cultured human cells.
Assuntos
Luciferases , Mitocôndrias , Proteínas Mitocondriais , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Mitocôndrias/química , Mitocôndrias/metabolismo , Luciferases/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Humanos , Células CultivadasRESUMO
In early 2024, a clade 2.3.4.4b high pathogenic H5N1 avian influenza virus was detected in dairy cows and humans in the United States. Since then, it has spread to herds in at least 13 states and caused symptomatic disease in at least fifteen people. To facilitate rapid testing of existing and novel countermeasures, here, we report the development of an H5N1 viral reverse genetic system, its use to produce fluorescent and bioluminescent variant strains, and their utility in high-throughput evaluation of antiviral interventions.
RESUMO
Today, in preclinical studies, optical bioimaging based on luminescence and fluorescence is indispensable in studying the development of neoplastic transformations, the proliferative activity of the tumor, its metastatic potential, as well as the therapeutic effect of antitumor agents. In order to expand the capabilities of optical imaging, sensors based on the bioluminescence resonance energy transfer (BRET) mechanism and, therefore, independent of an external light source are being developed. A targeted nanoplatform based on HER2-specific liposomes whose internal environment contains a genetically encoded BRET sensor was developed in this study to visualize deep-seated tumors characterized by overexpression of human epidermal growth factor receptor type 2 (HER2). The BRET sensor is a hybrid protein consisting of the highly catalytic luciferase NanoLuc (an energy donor) and a LSSmKate1 red fluorescent protein with a large Stokes shift (an energy acceptor). During the bioimaging of disseminated intraperitoneal tumors formed by HER2-positive SKOV3.ip1cells of serous ovarian cystadenocarcinoma, it was shown that the developed system is applicable in detecting deep-seated tumors of a certain molecular profile. The developed system can become an efficient platform for optimizing preclinical studies of novel targeted drugs.
RESUMO
Glycolate oxidase (HAO1) catalyses the synthesis of glyoxylate, a common metabolic intermediate that causes renal failure if accumulated. HAO1 inhibition is an emerging treatment for primary hyperoxaluria, a rare disorder of glyoxylate metabolism. Here we report the first cell-based measurement of inhibitor uptake and engagement with HAO1, by adapting the cellular thermal shift assay (CETSA) based on Nano luciferase complementation and luminescence readout. By profiling the interaction between HAO1 and four well-characterised inhibitors in intact and lysed HEK293T cells, we showed that our CETSA method differentiates between low-permeability/high-engagement and high-permeability/low-engagement ligands and is able to rank HAO1 inhibitors in line with both recombinant protein methods and previously reported indirect cellular assays. Our methodology addresses the unmet need for a robust, sensitive, and scalable cellular assay to guide HAO1 inhibitor development and, in broader terms, can be rapidly adapted for other targets to simultaneously monitor compound affinity and cellular permeability.
RESUMO
Botulinum neurotoxin type A (BoNT/A) is a biopharmaceutic widely used for the treatment of neurological diseases and in aesthetic medicine to achieve months-long paralysis of target muscles and glands. Large numbers of mice are used in the mouse bioassay (MBA) for various botulinum-related applications including batch release potency testing, antitoxin testing, countermeasure development, and basic research. BoNT/A intoxication causes severe suffering to the mice used for testing, and application-specific, non-animal alternatives are urgently needed. Cell-based assays (CBA) need to replicate all the physiological steps of botulinum intoxication, comprising neuronal binding, internalization, endosomal escape, and cleavage of synaptosomal-associated protein of 25 kDa (SNAP25). However, the CBA currently in use have limitations. In this study we show that LAN5 cells, a human neuroblastoma-derived cell line, are sensitive to BoNT/A and can be engineered to express a recombinant NanoLuciferase (NanoLuc)-tagged SNAP25 reporter molecule. On exposure, the reporter molecule is cleaved and releases a NanoLuc-SNAP25 fragment that can be captured on a 96-well plate for quantitative luminometry using a cleavage-specific SNAP25 antibody. We demonstrate, using purified BoNT/A and a commercial BoNT/A product, that the sensitivity of this new cell-based assay is in the fM range, comparable to that of the MBA. The new assay could replace the MBA in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.
Botulinum neurotoxin type A (BoNT/A) is extensively used in the treatment of neurological disorders and in aesthetic medicine. The toxin targets a protein called SNAP25 in nerve cells and blocks signaling. Traditionally, the potency and safety of BoNT/A has been tested in mice, which causes significant distress to the animals. Our study introduces a new method for detecting BoNT/A activity based on LAN5 cells, which are a self-replicating, human cell line derived from a tumor. We have engineered the cells to express a version of SNAP25 that allows the potency of BoNT/A to be measured. This new assay is as sensitive as the mouse bioassay. This development could lead to fewer animals being used in research and commercial testing of BoNT/A, benefiting both scientific progress and animal welfare.
Assuntos
Alternativas aos Testes com Animais , Bioensaio , Toxinas Botulínicas Tipo A , Proteína 25 Associada a Sinaptossoma , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas Tipo A/farmacologia , Humanos , Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Animais , Proteína 25 Associada a Sinaptossoma/metabolismo , Camundongos , Linhagem Celular TumoralRESUMO
Bioluminescence imaging (BLI) is an indispensable technique for visualizing the dynamics of diverse biological processes in mammalian animal models, including cancer, viral infections, and immune responses. However, a critical scientific challenge remains: non-invasively visualizing homeostatic and disease mechanisms in freely moving animals to understand the molecular basis of exercises, social behavior, and other phenomena. Classical BLI relies on prolonged camera exposure to accumulate the limited number of photons that traveled from deep tissues in anesthetized or constrained animals. Recent advancements in synthetic bioluminescence reactions, utilizing artificial luciferin-luciferase pairs, have considerably increased the number of detectable photons from deep tissues, facilitating high-speed BLI to capture moving objects. In this review, I provide an overview of emerging synthetic bioluminescence reactions that enable the non-invasive imaging of freely moving animals. This approach holds the potential to uncover unique physiological processes that are inaccessible with current methodologies.
Assuntos
Medições Luminescentes , Animais , Medições Luminescentes/métodos , Luciferases/metabolismo , Luciferases/genética , HumanosRESUMO
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Assuntos
Luciferases , Simulação de Dinâmica Molecular , Mutação , Luciferases/metabolismo , Luciferases/genética , Luciferases/química , Humanos , Ligação de Hidrogênio , Medições Luminescentes , Conformação ProteicaRESUMO
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
Assuntos
Proteínas de Bactérias , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Mapas de Interação de Proteínas , Proteínas de Ligação a DNA , Fatores de TranscriçãoRESUMO
In vitro modification of Plasmodium falciparum genes is the cornerstone of basic and translational malaria research. Achieved through DNA transfection, these modifications may entail altering protein sequence or abundance. Such experiments are critical for defining the molecular mechanisms of key parasite phenotypes and for validation of drug and vaccine targets. Despite its importance, successful transfection remains difficult and is a resource-intensive, rate-limiting step in P. falciparum research. Here, we report that inefficient loading of plasmid into erythrocytes limits transfection efficacy with commonly used electroporation methods. As these methods also require expensive instrumentation and consumables that are not broadly available, we explored a simpler method based on plasmid loading through hypotonic lysis and resealing of erythrocytes. We used parasite expression of a sensitive NanoLuc reporter for rapid evaluation and optimization of each step. Hypotonic buffer composition, resealing buffer volume and composition, and subsequent incubation affected plasmid retention and successful transfection. While ATP was critical for erythrocyte resealing, addition of Ca++ or glutathione did not improve transfection efficiency, with increasing Ca++ concentrations proving detrimental to outcomes. Compared with either the standard electroporation method or a previously reported hypotonic loading protocol, the optimized method yields greater plasmid loading and higher expression of the NanoLuc reporter 48 h after transfection. It also produced significantly faster outgrowth of parasites in transfections utilizing either episomal expression or CRISPR-Cas9 mediated integration. This new method produces higher P. falciparum transfection efficiency, reduces resource requirements and should accelerate molecular studies of malaria drug and vaccine targets.
Assuntos
Eritrócitos , Plasmídeos , Plasmodium falciparum , Transfecção , Plasmodium falciparum/genética , Eritrócitos/parasitologia , Plasmídeos/genética , Humanos , Transfecção/métodos , Eletroporação/métodos , DNA de Protozoário/genética , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controleRESUMO
To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.
Assuntos
Adenovírus Humanos , Genes Reporter , Humanos , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Carga Viral , Replicação ViralRESUMO
Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.
Assuntos
Exocitose , Ensaios de Triagem em Larga Escala , Neurônios , Neuropeptídeo Y , Animais , Humanos , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Ensaios de Triagem em Larga Escala/métodos , Vesículas Secretórias/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologiaRESUMO
New protein-fragment complementation assays (PCA) have successfully been developed to characterize protein-protein interactions in vitro and in vivo. Notably, the NanoBiT technology, employing fragment complementation of NanoLuc luciferase, stands out for its high sensitivity, wide dynamic range, and straightforward read out. Previously, we explored the in vitro protein interaction dynamics of the PII signalling protein using NanoBiT, revealing significant modulation of luminescence signals generated by the interaction between PII and its receptor protein NAGK by 2-oxoglutarate levels. In the current work, we investigated this technology in vivo, to find out whether recombinantly expressed NanoBiT constructs using the NanoLuc large fragment fused to PII and PII-interaction partners NAGK or PipX-fused to the NanoLuc Small BiT are capable of detecting the metabolic fluctuations in Escherichia coli. Therefore, we devised an assay capable of capturing the metabolic responses of E. coli cells, demonstrating real-time metabolic perturbation upon nitrogen upshift or depletion treatments. In particular, the PII-NAGK NanoBitT sensor pair reported these changes in a highly sensitive manner.
Assuntos
Synechococcus , Escherichia coli/metabolismo , Transdução de Sinais , Proteínas de Bactérias/metabolismoRESUMO
BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.
Assuntos
Luciferases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Células HEK293 , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genéticaRESUMO
All but a few mitochondrial proteins are translated into the cytosol and imported in via complicated and varied pathways. These processes occur over short time frames and, as such, are difficult to monitor with classical approaches such as Western blotting or autoradiography that require sample collection at discrete time points. The development of an assay based on a split version of the small luciferase-Mitoluc-has allowed us to monitor the import of proteins into mitochondria in high resolution and real time (Pereira et al., J Mol Biol 431:1689-1699, 2019). Luminescence measurements are acquired using a plate reader in the order of seconds. This allows scores of experiments to be conducted in parallel in a single multi-well plate and permits kinetic analysis yielding information about import mechanisms (Ford et al., Elife 11:e75426, 2022).
Assuntos
Luminescência , Mitocôndrias , Cinética , Mitocôndrias/metabolismo , Transporte Proteico , Medições LuminescentesRESUMO
Proteolysis targeting chimera (PROTAC) is a protein degradation technique that has been increasingly used in the development of new drugs in recent years. Akt is a classical serine/threonine kinase, and its role outside of the kinase has gradually gained attention in recent years, making it one of the proteins targeted by PROTACs. Currently, there are many methods used for the evaluation of intracellular protein degradation, but each has its own advantages or disadvantages. This study aimed to investigate the feasibility of evaluating the degradation of pan-Akt proteins in cells by PROTACs (MS21 and MS170) using the NanoLuc luciferase method. After conducting a thorough comparison between this method and the classical western blot assay in various cells, as well as testing the stability of the experiments between multiple batches, we found that NanoLuc luciferase is a highly accurate, stable, low-cost and easy-to-operate method for the evaluation of intracellular pan-Akt degradation by PROTACs with a short cycle time and high cellular expandability. Given the numerous advantages of this method, it is hypothesized that it could be extended to evaluate the degradation of more target proteins of PROTACs. In summary, the NanoLuc luciferase is a suitable method for early protein degradation screening of PROTAC compounds.
RESUMO
Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.
Assuntos
Técnicas Biossensoriais , Neoplasias , Neurofibromina 2 , Humanos , Transformação Celular Neoplásica , Genes Supressores de Tumor , Luciferases , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biossensoriais/métodosRESUMO
Despite the success of combination antiretroviral therapy (cART) in HIV treatment, a cure for HIV remains elusive. Scientists postulate that HIV latent reservoirs may be a vital target in curative strategies. Vorinostat is a latency-reversing agent that has demonstrated some effectiveness in reactivating latent HIV, but complementary therapies may be essential to enhance its efficacy. One such approach may utilize the CRISPR-Cas9 system, which has evolved to include transcriptional activators such as dCas9-VPR. In this study, we explored the effects of combining vorinostat coupled with gesicle-mediated delivery of dCas9-VPR in promoting the transcription of integrated HIV proviruses in HIV-NanoLuc CHME-5 microglia and J-Lat 10.6 lymphocytes. We confirmed that dCas9-VPR ribonucleoprotein complexes can be packaged into gesicles and application to cells successfully induced HIV transcription through interactions with the HIV LTR. Vorinostat also induced significant increases in proviral transcription but generated inhibition of cellular proliferation (microglia) or cell viability (lymphocytes) starting at 1,000 nM and higher concentrations. Experiments combining dCas9-VPR gesicles and vorinostat confirmed the enhanced transcriptional activation of the HIV provirus in microglia but not lymphocytes. Thus, a combination of dCas9-VPR gesicles with other latency-reversing agents may provide a complementary method to activate latent HIV in future studies utilizing patient-derived cells or small animal models.
RESUMO
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.
Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico , Luciferases , Proteínas de Choque Térmico/química , Escherichia coli/metabolismo , Dobramento de Proteína , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Bactérias/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/químicaRESUMO
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ubiquitinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Reparo do DNARESUMO
Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome composed of eight viral gene segments. For reverse genetics of influenza viruses, transcription of the mRNA for the viral proteins is typically done from a plasmid encoding an RNA polymerase II (pol II) promoter element upstream of cloned viral cDNA and expressed like host mRNA. On the other side, the synthesis of the negative-sense, single-stranded, uncapped vRNAs can be accomplished by the host's RNA polymerase I (pol I). The reverse genetics for influenza has allowed the manipulation of influenza genomes incorporating heterogeneous sequences into different segments of the influenza genome, such as reporter genes. In this chapter, we outline the protocol from the generation of reverse genetic plasmid that can be applied for the cloning of any of the segments of FLUAV or FLUBV. Furthermore, we describe a protocol for generating FLUAV or FLUBV recombinant viruses carrying Nanoluciferase (NLuc) in the PB1 gene using reverse genetics. Finally, we delineate a microneutralization protocol using FLUAV-NLuc or FLUBV-NLuc viruses optimized for the use of antibodies from different sources (mice, ferrets, avian, etc.), which provides a more sensitive, reliable, and avidity-independent method to assess the presence of neutralizing antibodies against FLUAV or FLUBV.