Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
1.
Adv Healthc Mater ; : e2401199, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054675

RESUMO

The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.

2.
Food Chem ; 458: 140295, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981397

RESUMO

Curcumin (Cur) as a natural food additive and photosensitizer has been widely applied on photodynamic sterilization and preservation for food, but the poor aqueous solubility and light stability restrict its extensive application. In this study, we report a Cur nanocapsules (Cur-CDs) made by carbon dots (CDs). Attributing to the hydrogen bonds formed between Cur and CDs, Cur-CDs exhibits excellent Cur aqueous solubility each to 9286.98 ng/mL (enhanced by 246.27 times) and light stability (enhanced by 1.51 times). The photogenerated electron transmission from Cur to CDs in addition resulted in >1.23 and 1.60 times generation of •O2- and •OH, compared to that of bare Cur. Accordingly, 5.73 × 103 CFU L. monocytogenes, and 5.43 × 103 CFU S. aureus were killed by 0.06 mg/mL Cur-CDs within 20 mins of blue light, showing the promising potential in the development and application of safe and environmentally friendly non-thermal sterilization technology based on Cur-CDs.

3.
Indian J Microbiol ; 64(2): 429-444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010996

RESUMO

Lipids have tremendously transformed the biomedical field, especially in the last few decades. Nanosystems, especially Lipid nanocapsules (LNCs), have emerged as the most demanding nanovehicle systems for delivering drugs, genes, and other diagnostic agents. Unique attributes and characteristic features such as higher encapsulation efficiency, stealth effect, ability to solubilize a wide range of drugs, capability to inhibit P-gp efflux pumps, and higher stability play a vital role in engaging this nanosystem. LNCs are a lipid-based nano-drug delivery method that combines the most significant traits of liposomes with polymeric nanoparticles. Structurally, LNCs have an oily core consisting of medium and long triglycerides and an aqueous phase encased in an amphiphilic shell. This manuscript crosstalks LNCs for various biomedical applications. A detailed elaboration of the structural composition, methods of preparation, and quality control aspects has also been attained, with particular emphasis on application approaches, ongoing challenges, and their possible resolution. The manuscript also expounds the preclinical data and discusses the patents atlas of LNCs to assist biomedical scientists working in this area and foster additional research. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01298-3.

4.
Adv Sci (Weinh) ; : e2403668, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973298

RESUMO

Nanocapsules enable multicomponent encapsulation of therapeutic cargoes with high encapsulation content and efficiency, which is vital for cancer immunotherapy. In the past, chemical crosslinking is used to synthesize nanocapsules, which can impede the regulatory approval process. Therefore, a new class of protein nanocapsules is developed by eliminating the need for chemical crosslinking by utilizing protein denaturation through a process that is referred to as "baking at the droplet interface". Such protein nanocapsules with antigens incorporated in the shell and a combination of encapsulated drugs showed an enhancement in the immune response of cells.

5.
Heliyon ; 10(12): e32808, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975186

RESUMO

For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 µg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).

6.
Small ; : e2311909, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031680

RESUMO

Polymer nanocapsules with hydrophobic cores are promising candidates for nanoreactors to carry out (bio)chemical reactions mimicking the performance of natural cellular systems. Their architecture allows reagents to be encapsulated in the cores enabling reactions to proceed in confined environments in a controlled, and efficient manner. Polysaccharide-shell oil-core nanocapsules are proposed here as facile mergeable nanoreactors. Spontaneous fusion of oppositely charged polysaccharide capsules is demonstrated for the first time. Such capsules are formed and easily loaded with reagents by nanoemulsification of an aqueous solution of hydrophobically modified polysaccharides (chitosan, hyaluronate) and oleic acid with dissolved desired hydrophobic compounds. Efficient fusion of the formed nanocapsules dispersed in an aqueous medium at optimized conditions (pH, ionic strength) is followed using fluorescence microscopy by labeling both their cores and shells with fluorescent dyes. As a proof of concept, a model fluorogenic synthesis is also realized by fusing the capsules containing separated reagents and the catalyst. The nanocapsules and fusion process developed here establish a platform for realization of versatile reactions in a confined environment including model studies on biologically relevant processes taking place in natural systems.

7.
Int J Pharm ; 661: 124458, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996823

RESUMO

Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.


Assuntos
Liberação Controlada de Fármacos , Flavonoides , Leucemia Mieloide Aguda , Nanocápsulas , Animais , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Flavonoides/química , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Nanocápsulas/química , Masculino , Apoptose/efeitos dos fármacos , Ratos , Glicolipídeos/química , Glicolipídeos/administração & dosagem , Glicolipídeos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/química , Monoterpenos/administração & dosagem , Células THP-1 , Disponibilidade Biológica , Administração Oral , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/química , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Monoterpenos Acíclicos
8.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892083

RESUMO

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Assuntos
Sulfatos de Condroitina , Portadores de Fármacos , Nanocápsulas , Nanocápsulas/química , Humanos , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Suplementos Nutricionais , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Emulsões/química , Tamanho da Partícula , Vitamina E/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Células HaCaT
9.
Int J Pharm ; 660: 124304, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38848799

RESUMO

Depression is one of the most common psychiatric disorders. Nanotechnology has emerged to optimize the pharmacological response. Therefore, the aim of this work was to develop and characterize liposomes and nanocapsules containing paroxetine hydrochloride and evaluate their antidepressant-like effect using the open field and tail suspension tests in mice. Liposomes and nanocapsules were prepared using the reverse-phase evaporation and nanoprecipitation methods, respectively. The particle size of the formulation ranged from 121.81 to 310.73 nm, the polydispersity index from 0.096 to 0.303, the zeta potential from -11.94 to -34.50 mV, the pH from 5.31 to 7.38, the drug content from 80.82 to 94.36 %, and the association efficiency was 98 %. Paroxetine hydrochloride showed slower release when associated with liposomes (43.82 %) compared to nanocapsules (95.59 %) after 10 h. In Vero cells, in vitro toxicity showed a concentration-dependent effect for paroxetine hydrochloride nanostructures. Both nanostructures decreased the immobility time in the TST at 2.5 mg/kg without affecting the number of crossings in the open field test, suggesting the antidepressant-like effect of paroxetine. In addition, the nanocapsules decreased the number of groomings, reinforcing the anxiolytic effect of this drug. These results suggest that the nanostructures were effective in preserving the antidepressant-like effect of paroxetine hydrochloride even at low doses.


Assuntos
Lipossomos , Nanocápsulas , Paroxetina , Animais , Paroxetina/administração & dosagem , Paroxetina/farmacologia , Paroxetina/química , Nanocápsulas/química , Camundongos , Chlorocebus aethiops , Masculino , Células Vero , Tamanho da Partícula , Liberação Controlada de Fármacos , Depressão/tratamento farmacológico , Elevação dos Membros Posteriores , Antidepressivos/administração & dosagem , Antidepressivos/química , Antidepressivos/farmacologia , Antidepressivos de Segunda Geração/administração & dosagem , Antidepressivos de Segunda Geração/química , Antidepressivos de Segunda Geração/farmacologia , Comportamento Animal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
Int J Biol Macromol ; 273(Pt 2): 132972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876241

RESUMO

The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.


Assuntos
Antibacterianos , Antioxidantes , Quitosana , Liberação Controlada de Fármacos , Nanopartículas , Óleos Voláteis , Folhas de Planta , Quitosana/química , Quitosana/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Folhas de Planta/química , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas/química , Fenômenos Químicos , Testes de Sensibilidade Microbiana , Portadores de Fármacos/química , Tamanho da Partícula , Nanocápsulas/química
11.
Pharmaceutics ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931948

RESUMO

Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 µg/mL, with the greatest reductions in cell viability observed at 50 µg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 µg/mL and 50 µg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 µg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.

12.
Nanomicro Lett ; 16(1): 204, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811461
13.
Talanta ; 276: 126273, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776775

RESUMO

Ultrasensitive and rapid detection of low concentration of Escherichia coli O157: H7 (E. coli O157:H7) in food is essential for food safety and public health. In this study, A novel fluorescence signal amplification biosensor based on magnetic separation platform and red fluorescent carbon dots (R-CDs)-encapsulated breakable organosilica nanocapsules (BONs) for ultrasensitive detection of E. coli O157:H7 was established. Wulff-type boronic acid functionalized magnetic nanoparticles (MNPs@B-N/APBA) with broad-spectrum bacterial recognition ability were synthesized for the first time to recognize and capture E. coli O157: H7 in food samples. R-CDs@BONs labeled with anti-E. coli O157:H7 monoclonal antibody (mAb@R-CDs@BONs-NH2) were used as the second recognition element to ensure the specificity for E. coli O157:H7 and form MNPs@B-N/APBA∼ E. coli O157:H7∼mAb@R-CDs@BONs-NH2 sandwich complexes, followed by releasing R-CDs to generate amplified fluorescence response signals for quantitative detection of E. coli O157:H7. The proposed method had a limit of detection with 25 CFU/mL in pure culture and contaminated lettuce samples, which the whole detection process took about 120 min. This fluorescence signal amplification biosensor has the potential to detect other pathogens in food by altering specific antibodies.


Assuntos
Técnicas Biossensoriais , Carbono , Escherichia coli O157 , Pontos Quânticos , Escherichia coli O157/isolamento & purificação , Técnicas Biossensoriais/métodos , Carbono/química , Pontos Quânticos/química , Nanocápsulas/química , Corantes Fluorescentes/química , Fluorescência , Limite de Detecção , Compostos de Organossilício/química , Microbiologia de Alimentos , Lactuca/microbiologia , Lactuca/química
14.
Phytomedicine ; 130: 155763, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820661

RESUMO

BACKGROUND: Emodin is a chemical compound found in traditional Chinese herbs. It possesses anti-inflammatory and many other pharmacological effects. Our previous study showed that emodin significantly alleviates the inflammation effect of severe acute pancreatitis (SAP). However, its poor solubility, high toxicity and limited pancreas retention time hinder its clinical application. PURPOSE: We aimed to prepare emodin nanocapsules with improved bioavailability to achieve the controlled release of emodin by targeting macrophages. Further, the mechanism of mannose-conjugated chitosan-coated lipid nanocapsules loaded with emodin (M-CS-E-LNC) in the treatment of SAP was explored. METHODS: M-CS-E-LNC were prepared by the phase inversion method with slight modification. The expression of inflammation mediators and the anti-inflammation efficacy of M-CS-E-LNC were examined by ELISA, IHC and IF in macrophage cells and LPS-induced SAP mice. IVIS spectrum imaging and HPLC were applied to explore the controlled release of M-CS-E-LNC in the pancreas. LC-MS/MS was performed for lipidomics analysis of macrophages. Moreover, a vector-based short hairpin RNA (shRNA) method was used to silence CTP1 gene expression in macrophage cells. RESULTS: The levels of inflammatory mediators in macrophages were markedly decreased after treatment with M-CS-E-LNC. The same anti-inflammation effects were detected in SAP mouse through the analysis of serum levels of amylase, TNF-α and IL-6. Importantly, M-CS-E-LNC allowed the emodin to selectively accumulate at pancreas and gastrointestinal tissues, thus exhibiting a targeted release. Mechanistically, the M-CS-E-LNC treatment group showed up-regulated expression of the carnitine palmitoyltransferase 1 (CPT1) protein which promoted intracellular long-chain fatty acid transport, thereby promoting the M2 phenotype polarization of macrophages. CONCLUSION: M-CS-E-LNC exhibited significantly improved bioavailability and water solubility, which translated to greater therapeutic effects on macrophage polarization. Our findings also demonstrate, for the first time, that CPT1 may be a new therapeutic target for SAP treatment.


Assuntos
Emodina , Metabolismo dos Lipídeos , Macrófagos , Nanocápsulas , Pancreatite , Animais , Emodina/farmacologia , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pancreatite/tratamento farmacológico , Células RAW 264.7 , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Anti-Inflamatórios/farmacologia , Quitosana/farmacologia , Quitosana/química , Camundongos Endogâmicos C57BL , Lipopolissacarídeos , Reprogramação Metabólica
15.
Int J Pharm ; 659: 124237, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38762167

RESUMO

Intranasal administration is an efficient strategy for bypassing the BBB, favoring drug accumulation in the brain, and improving its efficiency. Lipid nanocapsules (LNC) are suitable nanocarriers for the delivery of lipophilic drugs via this route and can be used to encapsulate lipophilic molecules such as retinoic acid (RA) and calcitriol (Cal). As the hallmarks of multiple sclerosis (MS) are neuroinflammation and oligodendrocyte loss, our hypothesis was that by combining two molecules known for their pro-differentiating properties, encapsulated in LNC, and delivered by intranasal administration, we would stimulate oligodendrocyte progenitor cells (OPC) differentiation into oligodendrocytes and provide a new pro-remyelinating therapy. LNC loaded with RA (LNC-RA) and Cal (LNC-Cal) were stable for at least 8 weeks. The combination of RA and Cal was more efficient than the molecules alone, encapsulated or not, on OPC differentiation in vitro and decreased microglia cell activation in a dose-dependent manner. After the combined intranasal administration of LNC-RA and LNC-Cal in a mouse cuprizone model of demyelination, increased MBP staining was observed in the corpus callosum. In conclusion, intranasal delivery of lipophilic drugs encapsulated in LNC is a promising strategy for myelinating therapies.


Assuntos
Administração Intranasal , Calcitriol , Diferenciação Celular , Nanocápsulas , Células Precursoras de Oligodendrócitos , Tretinoína , Animais , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Lipídeos/química , Células Cultivadas , Masculino
16.
Artigo em Inglês | MEDLINE | ID: mdl-38767313

RESUMO

Feed costs present a major burden in animal production for human consumption, representing a key opportunity for cost reduction and profit improvement. Nanotechnology offers potential to increase productivity by creating higher-quality and safer products. The feed sector has benefited from the use of nanosystems to improve the stability and bioavailability of feed ingredients. The development of nanotechnology products for feed must consider the challenges raised by biological barriers as well as regulatory requirements. While some nanotechnology-based products are already commercially available for animal production, the exponential growth and application of these products requires further research ensuring their safety and the establishment of comprehensive legislative frameworks and regulatory guidelines. Thus, this article provides an overview of the current state of the art regarding nanotechnology solutions applied in feed, as well as the risks and opportunities aimed to help researchers and livestock producers.

17.
Nanomedicine (Lond) ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690778

RESUMO

Aim: The present study investigated renal elimination after intravenous administration of four different formulations of lipid nanocapsules (LNCs) containing dyes adapted to Förster resonance energy transfer (FRET-LNCs). Materials & methods: FRET-LNCs of 85 or 50 nm with or without a pegylated surface were injected and collected in the blood or urine of rats at different time points. Quantitative analysis was performed to measure intact FRET-LNCs. Results & conclusion: No intact LNCs were found in urine (0 particles/ml) for all formulations. The 50-nm pegylated LNCs were eliminated faster from the blood, whereas 85-nm pegylated LNCS were eliminated slower than nonpegylated LNCs. Elimination of FRET-LNCs was mainly due to liver tissue interaction and not renal elimination.

18.
ADMET DMPK ; 12(2): 299-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720922

RESUMO

Background and purpose: The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as ß-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach: This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results: The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion: Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.

19.
J Control Release ; 369: 658-667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604384

RESUMO

Granzyme B (GrB)-based immunotherapy is of interest for cancer treatment. However, insufficient cellular uptake and a lack of targeting remain challenges to make use of GrB for solid tumour therapy. As GrB induced cell death requires the help of perforin (PFN), we designed a system (nGPM) for the co-delivery of GrB and PFN. Therefore, GrB and PFN were loaded in a porous polymeric nanocapsule rich in acetylcholine analogues and matrix metalloproteinase-2 (MMP-2) responsive peptides. The neutrally charged nGPM nanocapsules showed as long circulating time and accumulated at the tumour sites. Once in the tumour the outside shell of nanocapsules became degraded by overexpressed MMP-2 proteases, resulting in the release of GrB and PFN. We found that the PFN complex formed small pores on the surface of tumour cells which allow GrB to enter the cytoplasm of tumour cells inducing cell apoptosis and tumour suppression significantly.


Assuntos
Granzimas , Nanocápsulas , Perforina , Granzimas/metabolismo , Nanocápsulas/química , Animais , Perforina/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/imunologia , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Imunoterapia/métodos , Camundongos Endogâmicos BALB C , Feminino , Camundongos
20.
J Control Release ; 369: 556-572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580136

RESUMO

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.


Assuntos
Camundongos Endogâmicos C57BL , Ovalbumina , Linfócitos T Citotóxicos , Animais , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Metacrilatos/química , Polímeros/química , Polímeros/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Vacinas/administração & dosagem , Vacinas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Nanovacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA