RESUMO
Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.
Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Plantas/microbiologia , Plantas/químicaRESUMO
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
RESUMO
The universal programmed construction of patterned periodic self-assembled nanostructures is a technical challenge in DNA origami nanotechnology but has numerous potential applications in biotechnology and biomedicine. In order to circumvent the dilemma that traditional DNA origami requires a long unusual single-stranded virus DNA as the scaffold and hundreds or even thousands of short strands as staples, we report a method for constructing periodically-self-folded rolling circle amplification products (RPs). The repeating unit is designed to have 3 intra-unit duplexes (inDP1,2,3) and 2 between-unit duplexes (buDP1,2). Based on the complementary pairing of bases, RPs each can self-fold into a periodic grid-patterned ribbon (GR) without the help of any auxiliary oligonucleotide staple. Moreover, by using only an oligonucleotide bridge strand, the GRs are connected together into the larger and denser planar nano-fence-shaped product (FP), which substantially reduces the number of DNA components compared with DNA origami and eliminates the obstacles in the practical application of DNA nanostructures. More interestingly, the FP-based DNA framework can be easily functionalized to offer spatial addressability for the precise positioning of nanoparticles and guest proteins with high spatial resolution, providing a new avenue for the future application of DNA assembled framework nanostructures in biology, material science, nanomedicine and computer science that often requires the ordered organization of functional moieties with nanometer-level and even molecular-level precision.
Assuntos
DNA , Nanoestruturas , Nanoestruturas/química , DNA/química , Conformação de Ácido Nucleico , Nanotecnologia/métodos , Técnicas de Amplificação de Ácido Nucleico , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.
Assuntos
DNA , Nanotecnologia , Humanos , Animais , DNA/química , Camundongos , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Medicina de Precisão , Aptâmeros de Nucleotídeos/química , Tamanho da Partícula , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologiaRESUMO
In the last three decades, the development of nanoparticles or nano-formulations as drug delivery systems has emerged as a promising tool to overcome the limitations of conventional delivery, potentially to improve the stability and solubility of active molecules, promote their transport across the biological membranes, and prolong circulation times to increase efficacy of a therapy. Despite several nano-formulations having applications in drug delivery, some issues concerning their safety and toxicity are still debated. This chapter describes the recent available information regarding safety, toxicity, and efficacy of nano-formulations for drug delivery. Several key factors can influence the behavior of nanoparticles in a biological environment, and their evaluation is crucial to design non-toxic and effective nano-formulations. Among them, we have focused our attention on materials and methods for their preparation (including the innovative microfluidic technique), mechanisms of interactions with biological systems, purification of nanoparticles, manufacture impurities, and nano-stability. This chapter places emphasis on the utilization of in silico, in vitro, and in vivo models for the assessment and prediction of toxicity associated with these nano-formulations. Furthermore, the chapter includes specific examples of in vitro and in vivo studies conducted on nanoparticles, illustrating their application in this field.
Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Humanos , Composição de Medicamentos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas/efeitos adversos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/toxicidadeRESUMO
The cultivation of edible mushrooms is increasing because of their widely recognized nutritional benefits. Advancements in cultivation techniques have facilitated large-scale mushroom production, meeting the growing consumer demand. This rise in cultivation has led to an increasingly urgent demand for advanced postharvest preservation methods to extend the shelf life of these mushrooms. The postharvest preservation of fresh edible mushrooms involves complex physiological changes and metabolic activities closely associated with gas composition, microbial presence, moisture content, ambient temperature, and enzymatic activity. Preserving edible mushrooms through various preservation strategies (physical, chemical, biological, and nanopackaging approaches) relies on regulating postharvest factors. Nanopackaging can preserve mushrooms' sensory and nutritional qualities due to the specific characteristics of nanomaterials, such as antimicrobial properties and gas/moisture barriers. Furthermore, the review explores current trends, fundamental mechanisms, and upcoming challenges in utilizing nanomaterials, particularly their capacity to enhance the "cell wall" integrity of edible mushrooms by regulating postharvest factors.
Assuntos
Agaricales , Conservação de Alimentos , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Agaricales/química , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento , Nanoestruturas/química , Valor NutritivoRESUMO
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Assuntos
Sistemas de Liberação de Medicamentos , Mitocôndrias , Nanomedicina , Nanopartículas , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Nanomedicina/métodos , Animais , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Doenças Neurodegenerativas/tratamento farmacológicoRESUMO
To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells. Localization and potential protein-protein interaction(s) were investigated using confocal microscopy and fluorescence correlation spectroscopy (FCS). Enhanced green fluorescent protein (EGFP)-MamI and the red fluorescent Tomato-MamL displayed distinct intracellular localization, with net-like and punctate fluorescence, respectively. Remarkably, co-expression revealed co-localization of both fluorescent fusion proteins in the same punctate pattern. An interaction between MamI and MamL was confirmed by co-immunoprecipitation. In addition, changes in EGFP-MamI distribution were accompanied by acquisition of intracellular mobility which all Tomato-MamL structures displayed. Analysis of extracts from these cells by FCS was consistent with an interaction between fluorescent fusion proteins, including an increase in particle radius. Co-localization and interaction of MamI and MamL demonstrate that select magnetosome proteins may associate in mammalian cells.
Assuntos
Proteínas de Bactérias , Magnetossomos , Magnetospirillum , Magnetossomos/metabolismo , Magnetossomos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Magnetospirillum/metabolismo , Magnetospirillum/genética , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Animais , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genéticaRESUMO
The fourth industrial revolution (Industry 4.0) is driving significant changes across multiple sectors, including the food industry. This review examines how Industry 4.0 technologies, such as smart sensors, artificial intelligence, robotics, and blockchain, among others, are transforming unit operations within the food sector. These operations, which include preparation, processing/transformation, preservation/stabilization, and packaging and transportation, are crucial for converting raw materials into high-quality food products. By incorporating advanced digital, physical, and biological innovations, Industry 4.0 technologies are enhancing precision, productivity, and environmental responsibility in food production. The review highlights innovative applications and key findings that showcase how these technologies can streamline processes, minimize waste, and improve food product quality. The adoption of Industry 4.0 innovations is increasingly reshaping the way food is prepared, transformed, preserved, packaged, and transported to the final consumer. The work provides a valuable roadmap for various sectors within agriculture and food industries, promoting the adoption of Industry 4.0 solutions to enhance efficiency, quality, and sustainability throughout the entire food supply chain.
RESUMO
Due to the intensive and widespread use of agrochemicals, especially pesticides, agriculture in the majority of the world is in dire need of practical improvements to fulfil the rising need for food while at the same time decreasing its associated health and environmental impact. Traditional methods, such as integrated pest control, have been used extensively and globally for decades to lessen the effects of intensive and extensive pesticide use, but they are insufficient. Safer pesticide alternatives, including biopesticides, to replace conventional pesticides have also been developed, but these efforts have not yet reached the necessary degree of operationalization and commercialization. In light of the challenges and trade-offs involved in using conventional pesticides, nanotechnology has sped up the development of nanopesticides, that are poisonous solely to specific pests and pathogens. The effectiveness of nano-agrochemicals has often demonstrated a median gain compared to traditional products of 20-30 %. The use of nanopesticides may enable more precise pest targeting, reduced pesticide dosage and decreased spray frequencies, allowing for a 10-fold reduction in pesticides dosage without sacrificing effectiveness. However, there are environmental concerns and potential for human exposure associated with the use of nanopesticides. This state-of-the-art review examines the most recent advances in science and the application of nanotechnology as a unique tool to address the serious negative effects of conventional pesticides. In addition to the health and environmental implications, policy and regulatory framework, and field application of nanopesticides in smallholder production systems are all part of the scientific review that is presented in this review.
RESUMO
Introduction Nanotechnology has emerged as a vital field, particularly in synthesizing nanoparticles. Silver nanoparticles (AgNPs) are recognized for their strong antimicrobial properties against various pathogens, including Staphylococcus aureus and Escherichia coli, due to their small size and high surface area. Green synthesis using plant extracts offers an eco-friendly alternative. The rise of multidrug-resistant bacteria underscores the urgent need for new antimicrobial agents. This study investigates the antibacterial activities of Dryopteris cristata AgNPs (DC-AgNPs) against S. aureus and E. coli, employing antimicrobial susceptibility testing (AST), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assessments, along with nanoparticle characterization. Materials and method The antimicrobial activity ofDC-AgNPs was evaluated using clinical isolates of E. coli and S. aureus. Bacterial inoculums were standardized to 0.5 MacFarlard (1.5 × 108 CFU/mL) and tested via a modified agar-well diffusion method. The MIC and MBC were determined using broth microdilution and sub-culturing methods, respectively. Characterization of the nanoparticles was conducted using Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results and conclusion D. cristata was identified as the plant used to synthesize AgNPs, confirmed by the University of Ilorin, Nigeria. Phytochemical screening revealed the presence of tannins, flavonoids, glycosides, and phenolics. The AgNPs were synthesized by adding the aqueous extract to silver nitrate, resulting in a color change. Characterization via UV-Vis spectrophotometry confirmed nanoparticle formation. Antimicrobial testing showed that DC-AgNPs effectively inhibited S. aureus and E. coli, with minimum inhibitory concentrations of 125 µg and 250 µg, respectively, indicating their potential as antimicrobial agents.
RESUMO
Acanthamoeba, a free-living amoeba (FLA) found in diverse ecosystems, poses significant health risks globally, particularly in Malaysia. It causes severe infectious diseases, e.g., Acanthamoeba keratitis (AK), primarily affecting individuals who wear contact lenses, along with granulomatous amoebic encephalitis (GAE), a rare but often life-threatening condition among immunocompromised individuals. AK has become increasingly prevalent in Malaysia and is linked to widespread environmental contamination and improper contact lens hygiene. Recent studies highlight Acanthamoeba's capacity to serve as a "Trojan horse" for amoeba-resistant bacteria (ARBs), contributing to hospital-associated infections (HAIs). These symbiotic relationships and the resilience of Acanthamoeba cysts make treatment challenging. Current diagnostic methods in Malaysia rely on microscopy and culture, though molecular procedures like polymerase chain reaction (PCR) are employed for more precise detection. Treatment options remain limited due to the amoeba's cyst resistance to conventional therapies. However, recent advancements in natural therapeutics, including using plant extracts such as betulinic acid from Pericampylus glaucus and chlorogenic acid from Lonicera japonica, have shown promising in vitro results. Additionally, nanotechnology applications, mainly using gold and silver nanoparticles to enhance drug efficacy, are emerging as potential solutions. Further, in vivo studies and clinical trials must validate these findings. This review highlights the requirement for continuous research, public health strategies, and interdisciplinary collaboration to address the growing threat of Acanthamoeba infections in Malaysia while exploring the country's rich biodiversity for innovative therapeutic solutions.
RESUMO
Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.
RESUMO
To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).
Assuntos
Valor Nutritivo , Oryza , Folhas de Planta , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/efeitos dos fármacos , Folhas de Planta/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Clorofila/metabolismo , Temperatura Alta , Grão Comestível/microbiologia , Grão Comestível/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Nanopartículas/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse FisiológicoRESUMO
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
RESUMO
E-waste refers to electrical and electronic equipment discarded without the intent of reuse by choice or at the end of its functional lifespan. In 2022, approximately 62 billion kilograms of e-waste, equivalent to 7.8 kilograms per capita, was generated globally. With an alarming annual growth of approximately 2 million metric tonnes, e-waste production may exceed 82 billion kilograms by 2030. Improper disposal of e-waste can be detrimental to human health and the entire biosphere. E-waste encompasses a wide range of chemicals, including heavy metals, Polychlorinated Biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Dibenzo-dioxins and -furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs), and radioactive elements. Improper disposal of e-waste equipment can directly contaminate the aquatic and terrestrial environment, leading to human exposure through ingestion, inhalation, dermal absorption, and trans-placental transfer. These contaminants can directly enter the human body from the environment, potentially fueling carcinogenesis by modulating cell cycle proteins, inducing oxidative stress, and mutations. Heavy metals such as cadmium, mercury, arsenic, lead, chromium, and nickel along with organic pollutants like PAHs, PCBs, PBDEs, PFAS, and radioactive elements, play a crucial role in inducing malignancy in humans. Effective collection, sorting, proper recycling, and appropriate disposal techniques are essential in reducing environmental contamination by e-waste-derived chemicals. Hence, this comprehensive review aims to uncover the global environmental burden of e-waste and its links to carcinogenesis in humans. Furthermore, it provides an inclusive discussion on potential treatment approaches to minimize environmental e-waste contamination.
RESUMO
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer in drug delivery and nanoparticle (NP) formulation due to its controlled drug release properties and safety profiles. Among the methods available for NP production, nanoprecipitation is distinguished by its simplicity and scalability. However, it requires careful optimisation to achieve the desired NP characteristics, making the process potentially lengthy and costly. This study aimed to assess and compare the predictive performance of Design of Experiments (DOE) and Machine Learning (ML) models for the optimisation of PLGA nanoparticle size and zeta potential produced by nanoprecipitation. Various ML methods were employed to predict particle size, with Extreme Gradient Boosting (XGBoost) identified as the best performing. The key finding is that integrating ML with DOE provides deeper insights into the dataset than either method alone. While ML outperformed DOE in predictive performance, as evidenced by lower root mean squared error values and higher coefficients of determination, both methods struggled to accurately predict zeta potential, generating models with high errors. However, ML proved more effective in identifying the parameters that most significantly influence NP size, even with a smaller DOE dataset. Combining DOE datasets with ML for parameter importance was particularly advantageous in situations where data is limited, offering superior predictive power and the potential to streamline experimental design and optimisation. These results suggest that the synergistic use of ML and DOE can lead to more robust feature analysis and improved optimisation outcomes, particularly for NP size. This integrated approach can enhance the accuracy of predictions and supports more efficient experimental design, streamlining nanoparticle production processes, especially under resource-constrained conditions.
RESUMO
Nanoparticles, defined as particles ranging from 1 to 100 nanometers in size, are revolutionizing the approach to combating bacterial infections amid a backdrop of escalating antibiotic resistance. Bacterial infections remain a formidable global health challenge, causing millions of deaths annually and encompassing a spectrum from common illnesses like Strep throat to severe diseases such as tuberculosis and pneumonia. The misuse of antibiotics has precipitated the rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and carbapenem-resistant Enterobacteriaceae (CRE), underscoring the critical need for innovative therapeutic strategies. Nanotechnology offers a promising avenue in this crisis. Nanoparticles possess unique physical and chemical properties that distinguish them from traditional antibiotics. Their high surface area to volume ratio, ability to be functionalized with various molecules, and distinctive optical, electronic, and magnetic characteristics enable them to exert potent antibacterial effects. Mechanisms include physical disruption of bacterial membranes, generation of Reactive Oxygen Species (ROS), and release of metal ions that disrupt bacterial metabolism. Moreover, nanoparticles penetrate biofilms and bacterial cell walls more effectively than conventional antibiotics and can be precisely targeted to minimize off-target effects. Crucially, nanoparticles mitigate the development of bacterial resistance by leveraging multiple simultaneous mechanisms of action, which make it challenging for bacteria to adapt through single genetic mutations. As research advances, nanotechnology holds immense promise in transforming antibacterial treatments, offering effective solutions that address current infections and combat antibiotic resistance globally. This review provides a comprehensive overview of nanoparticle applications in antibacterial therapies, highlighting their mechanisms, advantages over antibiotics, and future directions in healthcare innovation.
RESUMO
This study aimed to formulate and statistically optimize spanlastics loaded spongy insert (SPLs-SI) of prednisolone Na phosphate (PRED) to enhance and sustain its anti-inflammatory effect in a controlled manner. An I-optimal optimization was employed using Design-Expert® software. The formulation variables were sonication time, the Span 60: EA ratio and type of edge activator (Tween 80 or PVA) while Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. This resulted in an optimum spanlastics (SPLs) formulation with a desirability of 0.919. It had a Span60:Tween80 ratio of 6:1 with a sonication time of 9.5 min. It was evaluated in terms of its EE%, VS, ZP, release behavior in comparison to drug solution in addition to the effect of aging on its characteristics. It had EE% of 87.56, VS of 152.2 nm and ZP of -37.38 Mv. It showed sustained release behavior of PRED in comparison to drug solution with good stability for thirty days. TEM images of the optimized PRED SPLs formulation showed spherical non-aggregated nanovesicles. Then it was loaded into chitosan spongy insert and evaluated in terms of its visual appearance, pH and mucoadhesion properties. It showed good mucoadhesive properties and pH in the safe ocular region. The FTIR, DSC and XRD spectra showed that PRED was successfully entrapped inside the SPLs vesicles. It was then exposed to an in-vivo studies where it was capable of enhancing the anti-inflammatory effect of PRED in a sustained manner with once daily application compared to commercial PRED solution. The spongy insert has the potential to be a promising carrier for the ocular delivery of PRED.
RESUMO
Green nanotechnology is the emerging field of research in recent decades with growing interest rapidly. This integrates green chemistry with green engineering to avoid using toxic chemicals in the synthesis of organic nanomaterials. Green nanotechnology would create a huge potential for the use of nanoparticles for more sustainable utilization in improving animal health. Nanoparticles can be synthesised by physical, chemical and biological processes. Traditional methods for physical and chemical synthesis of nanoparticles are toxic to humans, animals and environmental health, which limits their usefulness. Green synthesis of nanoparticles via biological processes and their application in animal health could maximize the benefits of nanotechnology in terms of enhancing food animal health and production as well as minimize the undesirable impacts on Planetary Health. Recent advances in nanotechnology have meant different nanomaterials, especially those from metal sources, are now available for use in nanomedicine. Metal nanoparticles are one of the most widely researched in green nanotechnology, and the number of articles on this subject in food animal production is growing nowadays. Therefore, research on metal nanoparticles using green technologies have utmost importance. In this review, we report the recent advancement of green synthesized metal nanoparticles in terms of their utilization in monogastric animal health, elucidate the research gap in this field and provide recommendations for future prospects.