Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Pharmacol Res ; 209: 107447, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374886

RESUMO

BACKGROUND: C-type natriuretic peptide (CNP) is a significant player in the maintenance of cardiac and vascular homeostasis regulating local blood flow, platelet and leukocyte activation, heart structure and function, angiogenesis and metabolic balance. Since such processes are perturbed in myocardial infarction (MI), we explored the role of cardiomyocyte-derived CNP, and pharmacological administration of the peptide, in offsetting the pathological consequences of MI. METHODS: Wild type (WT) and cardiomyocyte-restricted CNP null (cmCNP-/-) mice were subjected to left anterior descending coronary artery (LADCA) ligation and acute effects on infarct size and longer-term outcomes of cardiac repair explored. Heart structure and function were assessed by combined echocardiographic and molecular analyses. Pharmacological administration of CNP (0.2 mg/kg/day; s.c.) was utilized to assess therapeutic potential. RESULTS: Compared to WT littermates, cmCNP-/- mice had a modestly increased infarct size following LADCA ligation but without significant deterioration of cardiac structural and functional indices. However, cmCNP-/- animals exhibited overtly worse heart morphology and contractility 6 weeks following MI, with particularly deleterious reductions in left ventricular ejection fraction, dilatation, fibrosis and revascularization. This phenotype was largely recapitulated in animals with global deletion of natriuretic peptide receptor (NPR)-C (NPR-C-/-). Pharmacological administration of CNP rescued the deleterious pathology in WT and cmCNP-/-, but not NPR-C-/-, animals. CONCLUSIONS AND IMPLICATIONS: Cardiomyocytes synthesize and release CNP as an intrinsic protective mechanism in response to MI that reduces cardiac structural and functional deficits; these salutary actions are primarily NPR-C-dependent. Pharmacological targeting of CNP may represent a new therapeutic option for MI.

2.
FASEB J ; 38(15): e23858, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109516

RESUMO

We determined the epigenetic mechanisms regulating mean arterial pressure (MAP) and renal dysfunction in guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene-targeted mice. The Npr1 (encoding NPRA) gene-targeted mice were treated with class 1 specific histone deacetylase inhibitor (HDACi) mocetinostat (MGCD) to determine the epigenetic changes in a sex-specific manner. Adult male and female Npr1 haplotype (1-copy; Npr1+/-), wild-type (2-copy; Npr1+/+), and gene-duplicated heterozygous (3-copy; Npr1++/+) mice were intraperitoneally injected with MGCD (2 mg/kg) for 14 days. BP, renal function, histopathology, and epigenetic changes were measured. One-copy male mice showed significantly increased MAP, renal dysfunction, and fibrosis than 2-copy and 3-copy mice. Furthermore, HDAC1/2, collagen1alpha-2 (Col1α-2), and alpha smooth muscle actin (α-SMA) were significantly increased in 1-copy mice compared with 2-copy controls. The expression of antifibrotic microRNA-133a was attenuated in 1-copy mice but to a greater extent in males than females. NF-κB was localized at significantly lower levels in cytoplasm than in the nucleus with stronger DNA binding activity in 1-copy mice. MGCD significantly lowered BP, improved creatinine clearance, and repaired renal histopathology. The inhibition of class I HDACs led to a sex-dependent distinctive stimulation of acetylated positive histone marks and inhibition of methylated repressive histone marks in Npr1 1-copy mice; however, it epigenetically lowered MAP, repaired renal fibrosis, and proteinuria and suppressed NF-kB differentially in males versus females. Our results suggest a role for epigenetic targets affecting hypertension and renal dysfunction in a sex-specific manner.


Assuntos
Pressão Sanguínea , Epigênese Genética , Receptores do Fator Natriurético Atrial , Animais , Feminino , Masculino , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Camundongos , Pressão Sanguínea/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Inibidores de Histona Desacetilases/farmacologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia
3.
J Lipid Res ; 65(9): 100623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154732

RESUMO

Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.


Assuntos
Tecido Adiposo Branco , Mitocôndrias , Receptores do Fator Natriurético Atrial , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/genética , Mitocôndrias/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Respiração Celular , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/genética
4.
Pharmacol Ther ; 262: 108708, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154787

RESUMO

C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.


Assuntos
Sistema Cardiovascular , Peptídeo Natriurético Tipo C , Humanos , Peptídeo Natriurético Tipo C/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-38954528

RESUMO

OBJECTIVES: Musclin, recently identified as a myokine, has been recognized for its physiological significance in potentiating the functional properties of natrieutic peptides (NPs) through competitive inhibition of their clearance receptor, natrieutic peptide receptor C (NPR-C). This study, for the first time in the literature, investigated the dynamic response of musclin during and after aerobic exercise in humans, exploring its potential as a myokine and its interaction with NPs and NPR-C in the context of exercise-induced metabolic responses. METHODS: Twenty-one inactive young males participated, and we assessed changes in serum levels of musclin, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), epinephrine (Epi), and glycerol as an indicative of lipid mobilization, during and after moderate-intensity aerobic exercise. Furthermore, we evaluated the gene expression of NPR-C in subcutaneous fat biopsies. RESULTS: Serum musclin levels increased significantly during aerobic exercise, followed by a decline during recovery, remaining elevated compared to baseline. Significant correlations were found between musclin responses and lean body mass (LBM), indicating its regulation by skeletal muscle mass and exercise. Exercise-induced changes in musclin positively correlated with those of ANP, potentially preventing ANP degradation. Additionally, a potential interplay between NPR-C expression and musclin dynamics on ANP was suggested. However, musclin's influence on lipid mobilization was not predominant when considering other lipolytic factors during exercise. DISCUSSION: Musclin's classification as a myokine is supported by its response to aerobic exercise and its association with LBM. Additionally, its interactions with NPR-C and NPs suggest its physiological relevance and potential clinical implications.

6.
Endocrine ; 85(3): 1075-1090, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713329

RESUMO

INTRODUCTION: Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1 gene, and its expression is downregulated in the hypertrophied heart. AIM: We sought to examine the levels of Npr1 gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of ß-adrenergic receptor (ß-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1 transcription also studied. MAIN METHODS: Anti-hypertrophic Npr1 gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHC and ß-MHC), ß-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. RESULTS: A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1 gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of ß-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1 gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. CONCLUSION: Our result suggest that down regulation of Npr1 gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-ß-AR-ROS and NPR-A signaling.


Assuntos
Regulação para Baixo , Espécies Reativas de Oxigênio , Receptores do Fator Natriurético Atrial , Transdução de Sinais , Tri-Iodotironina , Animais , Ratos , Linhagem Celular , GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Receptores Adrenérgicos beta/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 327(1): H56-H66, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758128

RESUMO

Mouse models of congenital aortic valve malformations are useful for studying disease pathobiology, but most models have incomplete penetrance [e.g., ∼2 to 77% prevalence of bicuspid aortic valves (BAVs) across multiple models]. For longitudinal studies of pathologies associated with BAVs and other congenital valve malformations, which manifest over months in mice, it is operationally inefficient, economically burdensome, and ethically challenging to enroll large numbers of mice in studies without first identifying those with valvular abnormalities. To address this need, we established and validated a novel in vivo high-frequency (30 MHz) ultrasound imaging protocol capable of detecting aortic valvular malformations in juvenile mice. Fifty natriuretic peptide receptor 2 heterozygous mice on a low-density lipoprotein receptor-deficient background (Npr2+/-;Ldlr-/-; 32 males and 18 females) were imaged at 4 and 8 wk of age. Fourteen percent of the Npr2+/-;Ldlr-/- mice exhibited features associated with aortic valve malformations, including 1) abnormal transaortic flow patterns on color Doppler (recirculation and regurgitation), 2) peak systolic flow velocities distal to the aortic valves reaching or surpassing ∼1,250 mm/s by pulsed-wave Doppler, and 3) putative fusion of cusps along commissures and abnormal movement elucidated by two-dimensional (2-D) imaging with ultrahigh temporal resolution. Valves with these features were confirmed by ex vivo gross anatomy and histological visualization to have thickened cusps, partial fusions, or Sievers type-0 bicuspid valves. This ultrasound imaging protocol will enable efficient, cost effective, and humane implementation of studies of congenital aortic valvular abnormalities and associated pathologies in a wide range of mouse models.NEW & NOTEWORTHY We developed a high-frequency ultrasound imaging protocol for diagnosing congenital aortic valve structural abnormalities in 4-wk-old mice. Our protocol defines specific criteria to distinguish mice with abnormal aortic valves from those with normal tricuspid valves using color Doppler, pulsed-wave Doppler, and two-dimensional (2-D) imaging with ultrahigh temporal resolution. This approach enables early identification of valvular abnormalities for efficient and ethical experimental design of longitudinal studies of congenital valve diseases and associated pathologies in mice.


Assuntos
Valva Aórtica , Modelos Animais de Doenças , Receptores do Fator Natriurético Atrial , Animais , Valva Aórtica/anormalidades , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Feminino , Masculino , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/deficiência , Receptores do Fator Natriurético Atrial/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/deficiência , Camundongos Endogâmicos C57BL , Doença da Válvula Aórtica Bicúspide/diagnóstico por imagem
8.
FEBS J ; 291(10): 2273-2286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437249

RESUMO

Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.


Assuntos
Fator Natriurético Atrial , Receptores do Fator Natriurético Atrial , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/genética , Fator Natriurético Atrial/química , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/genética , Animais , Humanos , Ligação Proteica , Cristalografia por Raios X , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/genética , Sequência de Aminoácidos , Modelos Moleculares , Guanilato Ciclase/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/genética , Peptídeos Natriuréticos/química , Peptídeos Natriuréticos/metabolismo , Peptídeos Natriuréticos/genética , Sítios de Ligação
9.
Cell Tissue Res ; 396(2): 197-212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369645

RESUMO

The natriuretic peptide (NP) family consists of cardiac NPs (ANP, BNP, and VNP) and brain NPs (CNPs) in teleosts. In addition to CNP1-4, a paralogue of CNP4 (named CNP4b) was recently discovered in basal teleosts including Japanese eel. Mammals have lost most Cnps during the evolution, but teleost cnps were conserved and diversified, suggesting that CNPs are important hormones for maintaining brain functions in teleost. The present study evaluated the potency of each Japanese eel CNP to their NP receptors (NPR-A, NPR-B, NPR-C, and NPR-D) overexpressed in CHO cells. A comprehensive brain map of cnps- and nprs-expressing neurons in Japanese eel was constructed by integrating the localization results obtained by in situ hybridization. The result showed that CHO cells expressing NPR-A and NPR-B induced strong cGMP productions after stimulation by cardiac and brain NPs, respectively. Regarding brain distribution of cnps, cnp1 is engaged in the ventral telencephalic area and periventricular area including the parvocellular preoptic nucleus (Pp), anterior/posterior tuberal nuclei, and periventricular gray zone of the optic tectum. cnp3 is found in the habenular nucleus and prolactin cells in the pituitary. cnp4 is expressed in the ventral telencephalic area, while cnp4b is expressed in the motoneurons in the medullary area. Such CNP isoform-specific localizations suggest that function of each CNP has diverged in the eel brain. Furthermore, the Pp lacking the blood-brain barrier expressed both npra and nprb, suggesting that endocrine and paracrine NPs interplay for regulating the Pp functions in Japanese eels.


Assuntos
Encéfalo , Cricetulus , Peptídeos Natriuréticos , Animais , Encéfalo/metabolismo , Peptídeos Natriuréticos/metabolismo , Células CHO , Receptores do Fator Natriurético Atrial/metabolismo , Comunicação Parácrina , Ligantes , Anguilla/metabolismo , Sistema Endócrino/metabolismo
10.
Biol Reprod ; 110(1): 102-115, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37774352

RESUMO

In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.


Assuntos
Guanilato Ciclase , Monoéster Fosfórico Hidrolases , Animais , Feminino , Camundongos , Ratos , Guanilato Ciclase/metabolismo , Hormônio Luteinizante/metabolismo , Meiose , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
11.
Int J Cancer ; 154(7): 1272-1284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151776

RESUMO

Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.


Assuntos
Receptores do Fator Natriurético Atrial , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptose , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
12.
Front Cell Dev Biol ; 11: 1294748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078000

RESUMO

Introduction: Natriuretic peptide receptor 2 (NPR2 or NPR-B) plays a central role in growth development and bone morphogenesis and therefore loss-of-function variations in NPR2 gene have been reported to cause Acromesomelic Dysplasia, Maroteaux type 1 and short stature. While several hypotheses have been proposed to underlie the pathogenic mechanisms responsible for these conditions, the exact mechanisms, and functional characteristics of many of those variants and their correlations with the clinical manifestations have not been fully established. Methods: In this study, we examined eight NPR2 genetic missense variants (p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg318Gly, p.Arg388Gln, p.Arg495Cys, p.Arg557His, and p.Arg932Cys) Acromesomelic Dysplasia, Maroteaux type 1 and short stature located on diverse domains and broadly classified as variants of uncertain significance. The evaluated variants are either reported in patients with acromesomelic dysplasia in the homozygous state or short stature in the heterozygous state. Our investigation included the evaluation of their expression, subcellular trafficking and localization, N-glycosylation profiles, and cyclic guanosine monophosphate (cGMP) production activity. Results and Discussion: Our results indicate that variants p.Leu51Pro, p.Gly123Val, p.Leu314Arg, p.Arg388Gln have defective cellular trafficking, being sequestered within the endoplasmic reticulum (ER), and consequently impaired cGMP production ability. Conversely, variants p.Arg318Gly, p.Arg495Cys, and p.Arg557His seem to display a non-statistically significant behavior that is slightly comparable to WT-NPR2. On the other hand, p.Arg932Cys which is located within the guanylyl cyclase active site displayed normal cellular trafficking profile albeit with defective cGMP. Collectively, our data highlights the genotype-phenotype relationship that might be responsible for the milder symptoms observed in short stature compared to acromesomelic dysplasia. This study enhances our understanding of the functional consequences of several NPR2 variants, shedding light on their mechanisms and roles in related genetic disorders which might also help in their pathogenicity re-classification.

13.
Front Pharmacol ; 14: 1290253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026943

RESUMO

Background: Dilated cardiomyopathy (DCM), a specific form of cardiomyopathy, frequently presents clinically with either left ventricular or biventricular enlargement, often leading to progressive heart failure. In recent years, the application of bioinformatics technology to scrutinize the onset, progression, and prognosis of DCM has emerged as a fervent area of interest among scholars globally. Methods: In this study, core genes closely related to DCM were identified through bioinformatics analysis, including weighted gene co expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) and so on. The correlation was verified through experiments on DCM patients, DCM rat models, and core gene knockout mice. Subsequently, the effects of glucocorticoids on DCM and the regulation of core genes were observed. Result: In the present study, natriuretic peptide receptor 1 (NPR1) was identified as a core gene associated with DCM through WGCNA and ssGSEA. Significant impairment of cardiac and renal function was observed in both DCM patients and rats, concomitant with a notable reduction in NPR1 expression. NPR1 KO mice displayed symptomatic manifestations of DCM, underscoring the pivotal role of NPR1 in its pathogenesis. Notably, glucocorticoid treatment led to substantial improvements in cardiac and renal function, accompanied by an upregulation of NPR1 expression. Discussion: These findings highlight the critical involvement of NPR1 in the pathophysiology of DCM and its potential as a key target for glucocorticoid-based DCM therapy. The study provides a robust theoretical and experimental foundation for further investigations into DCM etiology and therapeutic strategies.

14.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37857164

RESUMO

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neoplasias , RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/genética , Regulação para Baixo , Ratos Sprague-Dawley , Dor/genética , Dor/metabolismo , Dor do Câncer/genética , Dor do Câncer/patologia , Hiperalgesia/genética , RNA Mensageiro/metabolismo , Peptídeos Natriuréticos/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
15.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572787

RESUMO

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Nefropatias , Camundongos , Humanos , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Aldosterona/efeitos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Acetatos/efeitos adversos , Acetatos/metabolismo , Fibrose
16.
Pulm Circ ; 13(3): e12270, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37528869

RESUMO

Previous studies have shown that atrial natriuretic peptide (ANP) attenuates agonist-induced pulmonary edema and that this effect may be mediated in part by the ANP clearance receptor, natriuretic peptide receptor-C (NPR-C). Obesity has been associated with lower plasma ANP levels due to increased expression of NPR-C, and with decreased severity of acute lung injury (ALI). Therefore, we hypothesized that increased expression of NPR-C may attenuate ALI severity in obese populations. To test this, we examined ALI in Npr3 wild-type (WT) and knockout (KO) mice fed normal chow (NC) or high-fat diets (HFD). After 12 weeks, ALI was induced with intra-tracheal administration of Pseudomonas aeruginosa strain 103 (PA103) or saline. ALI severity was determined by lung wet-to-dry ratio (W/D) along with measurement of cell count, protein levels from bronchoalveolar lavage fluid (BALF), and quantitative polymerase chain reaction was performed on whole lung to measure cytokine/chemokine and Npr3 mRNA expression. ANP levels were measured from plasma. PA103 caused ALI as determined by significant increases in W/D, BALF protein concentration, and whole lung cytokine/chemokine expression. PA103 increased Npr3 expression in the lungs of wild-type (WT) mice regardless of diet. There was a nonsignificant trend toward increased Npr3 expression in the lungs of WT mice fed HFD versus NC. No differences in ALI were seen between Npr3 knockout (KO) mice and WT-fed NC, but Npr3 KO mice fed HFD had a significantly greater W/D and BALF protein concentration than WT mice fed HFD. These findings support the hypothesis that Npr3 may help protect against ALI in obesity.

17.
Exp Ther Med ; 26(2): 374, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415837

RESUMO

Natriuretic peptides, which are produced by the heart, bind to natriuretic peptide receptor A (NPR1 encoded by natriuretic peptide receptor 1 gene) and cause vasodilation and natriuresis. Thus, they serve an important role in regulating blood pressure. In the present study, microinjection of CRISPR associated protein 9/single guide RNA into fertilized C57BL/6N mouse eggs was performed to generate filial generation zero (F0) Npr1 knockout homozygous mice (Npr1-/-). F0 mice mated with wild-type (WT) mice to obtain F1 Npr1 knockout heterozygous mice with stable heredity (Npr1+/-). F1 self-hybridization was used to expand the population of heterozygous mice (Npr1+/-). The present study performed echocardiography to investigate the impact of NPR1 gene knockdown on cardiac function. Compared with those in the WT group (C57BL/6N male mice), the left ventricular ejection fraction, myocardial contractility and renal sodium and potassium excretion and creatinine-clearance rates were decreased, indicating that Npr1 knockdown induced cardiac and renal dysfunction. In addition, expression of serum glucocorticoid-regulated kinase 1 (SGK1) increased significantly compared with that in WT mice. However, glucocorticoids (dexamethasone) upregulated NPR1 and inhibited SGK1 and alleviated cardiac and renal dysfunction caused by Npr1 gene heterozygosity. SGK1 inhibitor GSK650394 ameliorate cardiorenal syndrome by suppressing SGK1. Briefly, glucocorticoids inhibited SGK1 by upregulating NPR1, thereby ameliorating cardiorenal impairment caused by Npr1 gene heterozygosity. The present findings provided novel insight into the understanding of cardiorenal syndrome and suggested that glucocorticoids targeting the NPR1/SGK1 pathway may be a potential therapeutic target to treat cardiorenal syndrome.

18.
Cancer Lett ; 565: 216235, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209945

RESUMO

Cisplatin (CDDP)-based chemotherapy is the preferred treatment strategy for advanced stage gastric cancer (GC) patients. Despite the efficacy of chemotherapy, the development of chemoresistance negatively affects the prognosis of GC and the underlying mechanism remains poorly understood. Accumulated evidence suggests that mesenchymal stem cells (MSCs) play important roles in drug resistance. The chemoresistance and stemness of GC cells were observed by colony formation, CCK-8, sphere formation and flow cytometry assays. Cell lines and animal models were utilized to investigate related functions. Western blot, quantitative real-time PCR (qRT-PCR) and co-immunoprecipitation were used to explore related pathways. The results showed that MSCs improved the stemness and chemoresistance of GC cells and accounted for the poor prognosis of GC. Natriuretic peptide receptor A (NPRA) was upregulated in GC cells cocultured with MSCs and knockdown of NPRA reversed the MSC-induced stemness and chemoresistance. At the same time, MSCs could be recruited to GC by NPRA, which formed a loop. In addition, NPRA facilitated stemness and chemoresistance through fatty acid oxidation (FAO). Mechanistically, NPRA protected Mfn2 against protein degradation and promoted its mitochondrial localization, which consequently improved FAO. Furthermore, inhibition of FAO with etomoxir (ETX) attenuated MSC-induced CDDP resistance in vivo. In conclusion, MSC-induced NPRA promoted stemness and chemoresistance by upregulating Mfn2 and improving FAO. These findings help us understand the role of NPRA in the prognosis and chemotherapy of GC. NPRA may be a promising target to overcome chemoresistance.


Assuntos
Neoplasias Gástricas , Animais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ácidos Graxos , Linhagem Celular Tumoral
19.
Pflugers Arch ; 475(3): 343-360, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480070

RESUMO

The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection. Since neither the NP-mediated renal functions nor the renal target cells of renoprotection are completely understood, we performed systematic localization studies of NP receptors using in situ hybridization (RNAscope) in mouse kidneys. NPR-A mRNA is highly expressed in glomeruli (mainly podocytes), renal arterioles, endothelial cells of peritubular capillaries, and PDGFR-receptor ß positive (PDGFR-ß) interstitial cells. No NPR-A mRNA was detected by RNAscope in the tubular system. In contrast, NPR-B expression is highest in proximal tubules. NPR-C is located in glomeruli (mainly podocytes), in endothelial cells and PDGFR-ß positive cells. To test for a possible regulation of NPRs in kidney diseases, their distribution was studied in adenine nephropathy. Signal intensity of NPR-A and NPR-B mRNA was reduced while their spatial distribution was unaltered compared with healthy kidneys. In contrast, NPR-C mRNA signal was markedly enhanced in cell clusters of myofibroblasts in fibrotic areas of adenine kidneys. In conclusion, the primary renal targets of ANP and BNP are glomerular, vascular, and interstitial cells but not the tubular compartment, while the CNP receptor NPR-B is highly expressed in proximal tubules. Further studies are needed to clarify the function and interplay of this specific receptor expression pattern.


Assuntos
Células Endoteliais , Peptídeos Natriuréticos , Animais , Camundongos , Fator Natriurético Atrial/metabolismo , Células Endoteliais/metabolismo , Rim/metabolismo , Peptídeo Natriurético Encefálico , RNA Mensageiro , Vasodilatadores , Receptores de Peptídeos/metabolismo
20.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430437

RESUMO

The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA's corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.


Assuntos
Células Endoteliais , Proteína Quinase C , Humanos , Células Endoteliais/metabolismo , Proteína Quinase C/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Diglicerídeos/farmacologia , Diglicerídeos/metabolismo , Ligantes , Peptídeos Natriuréticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA