Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Gene ; 930: 148835, 2024 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-39127414

RESUMO

BACKGROUND: Gliomas are the most common primary malignant tumours of the central nervous system, and neddylation may be a potential target for the treatment of gliomas. Our study analysed neddylation's potential role in gliomas of different pathological types and its correlation with immunotherapy. METHODS: Genes required for model construction were sourced from existing literature, and their expression data were extracted from the TCGA and CGGA databases. LASSO regression was employed to identify genes associated with the prognosis of glioma patients in TCGA and to establish a clinical prognostic model. Biological changes in glioma cell lines following intervention with hub genes were evaluated using the CCK-8 assay and transwell assay. The genes implicated in the model construction were validated across various cell lines using Western blot. We conducted analyses to examine correlations between model scores and clinical data, tumor microenvironments, and immune checkpoints. Furthermore, we investigated potential differences in molecular functions and mechanisms among different groups. RESULTS: We identified 249 genes from the Reactome database and analysed their expression profiles in the TCGA and CGGA databases. After using LASSO-Cox, four genes (BRCA1, BIRC5, FBXL16 and KLHL25, p < 0.05) with significant correlations were identified. We selected FBXL16 for validation in in vitro experiments. Following FBXL16 overexpression, the proliferation, migration, and invasion abilities of glioma cell lines all showed a decrease. Then, we constructed the NEDD Index for gliomas. The nomogram indicated that this model could serve as an independent prognostic marker. Analysis of the tumour microenvironment and immune checkpoints revealed that the NEDD index was also correlated with immune cell infiltration and the expression levels of various immune checkpoints. CONCLUSION: The NEDD index can serve as a practical tool for predicting the prognosis of glioma patients, and it is correlated with immune cell infiltration and the expression levels of immune checkpoints.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Proliferação de Células/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Bases de Dados Genéticas , Movimento Celular/genética , Masculino
2.
Chembiochem ; : e202400478, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022855

RESUMO

Similar to ubiquitin, the ubiquitin-like protein NEDD8 is not only conjugated to other proteins but is itself subject to posttranslational modifications including lysine acetylation. Yet, compared to ubiquitin, only little is known about the biochemical and structural consequences of site-specific NEDD8 acetylation. Here, we generated site-specifically mono-acetylated NEDD8 variants for each known acetylation site by genetic code expansion. We show that, in particular, acetylation of K11 has a negative impact on the usage of NEDD8 by the NEDD8-conjugating enzymes UBE2M and UBE2F and that this is likely due to electrostatic and steric effects resulting in conformational changes of NEDD8. Finally, we provide evidence that p300 acts as a position-specific NEDD8 acetyltransferase.

3.
J Biol Chem ; 300(8): 107512, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960037

RESUMO

The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.

4.
Cell Rep Med ; 5(7): 101653, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019009

RESUMO

Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.


Assuntos
Acetaminofen , Cardiolipinas , Doença Hepática Induzida por Substâncias e Drogas , Ciclopentanos , Proteína NEDD8 , Pirimidinas , Acetaminofen/efeitos adversos , Animais , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Humanos , Pirimidinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cardiolipinas/metabolismo , Camundongos , Ciclopentanos/farmacologia , Masculino , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Transdução de Sinais/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores
5.
DNA Cell Biol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885136

RESUMO

Plasmodium parasites, the causative agents of malaria, rely on sophisticated cellular mechanisms to survive and proliferate within their hosts. Plasmodium complex life cycle requires posttranslational modifications (PTMs) to control cellular activities. Neddylation is a type of PTM in which NEDD8 is covalently attached to target proteins and plays an important role in cell cycle control and metabolism. Covalent attachment to its substrates requires the Nedd8-activating enzyme, E1; the NEDD8-conjugating enzyme, E2; and the ligase, E3. In Plasmodium, protein neddylation is essential for parasite development during the stage I-II transition from zygote to ookinete differentiation and malaria transmission. Here, we discuss the current understanding of protein neddylation in Plasmodium, which is involved in malaria transmission.

6.
Free Radic Biol Med ; 219: 127-140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614228

RESUMO

Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.


Assuntos
Cardiotoxicidade , Ciclopentanos , Doxorrubicina , Miócitos Cardíacos , Proteína NEDD8 , Pirimidinas , Animais , Camundongos , Apoptose/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/uso terapêutico , Doxorrubicina/efeitos adversos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína NEDD8/metabolismo , Proteína NEDD8/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética
7.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604315

RESUMO

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Assuntos
Retinopatia Diabética , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Proteína NEDD8 , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Produtos Finais de Glicação Avançada/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Leuk Lymphoma ; 65(7): 978-988, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38489672

RESUMO

Adult T-cell leukemia (ATL), caused by HTLV-1, is the most lethal hematological malignancy. NEDD8-activating enzyme (NAE) is a component of the NEDD8 conjunction pathway that regulates cullin-RING ubiquitin ligase (CRL) activity. HTLV-1-infected T cells expressed higher levels of NAE catalytic subunit UBA3 than normal peripheral blood mononuclear cells. NAE1 knockdown inhibited proliferation of HTLV-1-infected T cells. The NAE1 inhibitor MLN4924 suppressed neddylation of cullin and inhibited the CRL-mediated turnover of tumor suppressor proteins. MLN4924 inhibited proliferation of HTLV-1-infected T cells by inducing DNA damage, leading to S phase arrest and caspase-dependent apoptosis. S phase arrest was associated with CDK2 and cyclin A downregulation. MLN4924-induced apoptosis was mediated by the upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins. Furthermore, MLN4924 inhibited NF-κB, AP-1, and Akt signaling pathways and activated JNK. Therefore, neddylation inhibition is an attractive strategy for ATL therapy. Our findings support the use of MLN4924 in ATL clinical trials.


Assuntos
Apoptose , Proliferação de Células , Ciclopentanos , Vírus Linfotrópico T Tipo 1 Humano , Proteína NEDD8 , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Transdução de Sinais , Fator de Transcrição AP-1 , Enzimas Ativadoras de Ubiquitina , Humanos , Pirimidinas/farmacologia , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Ciclopentanos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Proteína NEDD8/metabolismo , Proliferação de Células/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Ubiquitinas/metabolismo , Proteínas Culina/metabolismo
9.
Bioorg Med Chem Lett ; 100: 129647, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320715

RESUMO

The overexpression of neddylation modification is frequently observed in human tumor cells. Targeting the neddylation pathway has been recognized as a promising anticancer therapeutic strategy, thus discovering potent and selective neddylation inhibitors is of great importance. In this study, we designed and synthesized a series of novel neddylation inhibitors bearing benzothiazole scaffolds by molecular hybridization strategy and all compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549 and KYSE-30 cell lines. In vitro anti-tumor studies showed that the most promising compound X-10, effectively suppressed MGC-803 cells growth and migration, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, by directly interacting with NAE1, X-10 blocked NAE1 activity, specifically preventing neddylation of Cullin 3 and Cullin 1, and produced a dose-response decline in the level of UBC12-NEDD8 complex. Overall, our data indicate that X-10 inhibits the process of neddylation, making it a potentially agent for both cancer prevention and therapy purposes.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Ciclo Celular , Benzotiazóis/farmacologia , Ciclopentanos/farmacologia , Linhagem Celular Tumoral , Apoptose
10.
Int J Oncol ; 64(4)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391033

RESUMO

Neddylation, akin to ubiquitination, represents a post­translational modification of proteins wherein neural precursor cell­expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8­mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti­CRC target.


Assuntos
Neoplasias Colorretais , Ubiquitinas , Animais , Humanos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética
11.
J Biol Chem ; 300(3): 105752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354780

RESUMO

Cullin (CUL)-RING (Really Interesting New Gene) E3 ubiquitin (Ub) ligases (CRLs) are the largest E3 family. The E3 CRL core ligase is a subcomplex formed by the CUL C-terminal domain bound with the ROC1/RBX1 RING finger protein, which acts as a hub that mediates and organizes multiple interactions with E2, Ub, Nedd8, and the ARIH family protein, thereby resulting in Ub transfer to the E3-bound substrate. This report describes the modulation of CRL-dependent ubiquitination by small molecule compounds including KH-4-43, #33, and suramin, which target the CRL core ligases. We show that both KH-4-43 and #33 inhibit the ubiquitination of CK1α by CRL4CRBN. However, either compound's inhibitory effect on this reaction is significantly reduced when a neddylated form of CRL4CRBN is used. On the other hand, both #33 and KH-4-43 inhibit the ubiquitination of ß-catenin by CRL1ß-TrCP and Nedd8-CRL1ß-TrCP almost equally. Thus, neddylation of CRL1ß-TrCP does not negatively impact the sensitivity to inhibition by #33 and KH-4-43. These findings suggest that the effects of neddylation to alter the sensitivity of CRL inhibition by KH-4-43/#33 is dependent upon the specific CRL type. Suramin, a compound that targets CUL's basic canyon, can effectively inhibit CRL1/4-dependent ubiquitination regardless of neddylation status, in contrast to the results observed with KH-4-43/#33. This observed differential drug sensitivity of KH-4-43/#33 appears to echo CUL-specific Nedd8 effects on CRLs as revealed by recent high-resolution structural biology efforts. The highly diversified CRL core ligase structures may provide opportunities for specific targeting by small molecule modulators.


Assuntos
Ligantes , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Suramina/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteína NEDD8/metabolismo
12.
mBio ; 15(4): e0023224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411954

RESUMO

Neddylation is a type of posttranslational modification known to regulate a wide range of cellular processes by covalently conjugating the ubiquitin-like protein Nedd8 to target proteins at lysine residues. However, the role of neddylation in malaria parasites has not been determined. Here, for the first time, we showed that neddylation plays an essential role in malaria transmission in Plasmodium berghei. We found that disruption of Nedd8 did not affect blood-stage propagation, gametocyte development, gamete formation, or zygote formation while abolishing the formation of ookinetes and further transmission of the parasites in mosquitoes. These phenotypic defects in Nedd8 knockout parasites were complemented by reintroducing the gene that restored mosquito transmission to wild-type levels. Our data establish the role of P. berghei Nedd8 in malaria parasite transmission.IMPORTANCENeddylation is a process by which Nedd8 is covalently attached to target proteins through three-step enzymatic cascades. The attachment of Nedd8 residues results in a range of diverse functions, such as cell cycle regulation, metabolism, immunity, and tumorigenesis. The potential neddylation substrates are cullin (CUL) family members, which are implicated in controlling the cell cycle. Cullin neddylation leads to the activation of cullin-RING ubiquitin ligases, which regulate a myriad of biological processes through target-specific ubiquitylation. Neddylation possibly regulates meiosis in zygotes, which subsequently develop into ookinetes. Our findings point to an essential function of this neddylation pathway and highlight its possible importance in designing novel intervention strategies.


Assuntos
Plasmodium berghei , Ubiquitinas , Animais , Ubiquitinas/genética , Ubiquitinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Ageing Res Rev ; 94: 102191, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38199526

RESUMO

Aging in humans is associated with abdominal distribution and remodeling of body fat and a parallel gradual increase in the prevalence of metabolic diseases such as obesity, type 2 diabetes mellitus and fatty liver disease, as well as the risk of developing metabolic complications. Current treatments might be improved by understanding the detailed mechanisms underlying the onset of age-related metabolic disorders. Neddylation, a post-translational modification that adds the ubiquitin-like protein NEDD8 to substrate proteins, has recently been linked to age-related metabolic diseases, opening new avenues of investigation and raising a potential target for treatment of these diseases. In this review, we will focus on the potential role of NEDD8-mediated neddylation in age-related metabolic dysregulation, insulin resistance, obesity, type 2 diabetes mellitus and fatty liver. We propose that alterations in NEDD8-mediated neddylation contribute to triggering insulin resistance and the development of age-related metabolic dysregulation, thus highlighting NEDD8 as a promising therapeutic target for preventing age-related metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Proteína NEDD8 , Ubiquitinas/metabolismo , Obesidade
14.
Biomark Res ; 12(1): 5, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191508

RESUMO

Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.

15.
Med Oncol ; 40(10): 286, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656220

RESUMO

Immunosuppressive cells play important roles in generating an immunosuppressive tumor microenvironment and facilitating tumor immune escape. However, the molecular mechanisms underlying their immunosuppressive effects remain unclear. UBA3, the sole catalytic subunit of the neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8)-activating enzyme E1, is highly expressed in various human malignancies, along with an activated neddylation pathway. In this study, we investigated the relationships between the UBA3-dependent neddylation pathway and the infiltration of several immunosuppressive cell populations in lung adenocarcinoma (LUAD). We explored the regulatory mechanisms of UBA3 in LUAD cells by using mRNA sequencing and functional enrichment analyses. Correlations between neddylation and immune infiltrates were assessed by Western blotting, real-time PCR, and analyses of public databases. We found elevated levels of UBA3 expression in LUAD tissues compared to adjacent normal tissues. Blocking UBA3 and the neddylation pathway promoted the accumulation of the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκBα), inhibiting the gene expression of tumor cell-derived cytokines such as C-C motif chemokine ligand (CCL) 2, C-X-C motif ligand (CXCL)1, CXCL2, colony-stimulating factor (CSF) 1, CSF2 interleukin (IL)-6, and IL-1B. Moreover, the overexpression of UBA3 in LUAD cells was associated with the secretion of these cytokines, and the recruitment and infiltration of immunosuppressive cells including tumor-associated macrophages (TAMs), plasmacytoid dendritic cells (pDCs), Th2 cells and T-regulatory cells (Tregs). This could facilitate the tumor immune escape and malignant progression of LUAD. Our findings provide new insights into the role of UBA3 in establishing an immunosuppressive tumor microenvironment by modulating nuclear factor kappa B (NF-кB) signaling and the neddylation pathway.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Enzimas Ativadoras de Ubiquitina , Humanos , Adenocarcinoma de Pulmão/metabolismo , Citocinas , Ligantes , Neoplasias Pulmonares/metabolismo , Proteína NEDD8 , NF-kappa B , Microambiente Tumoral , Enzimas Ativadoras de Ubiquitina/metabolismo
16.
Breast Cancer Res Treat ; 202(2): 397-408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640964

RESUMO

PURPOSE: Overactivated neddylation is considered to be a common event in cancer. Long non-coding RNAs (lncRNAs) can regulate cancer development by mediating post-translational modifications. However, the role of lncRNA in neddylation modification remains unclear. METHODS: LncRNA cytochrome P450 family 1 subfamily B member 1 antisense RNA 1 (CYP1B1-AS1) expression in breast cancer tissues was evaluated by RT-PCR and TCGA BRCA data. Gain and loss of function experiments were performed to explore the role of CYP1B1-AS1 in breast cancer cell proliferation and apoptosis in vitro and in vivo. Luciferase assay, CHIP-qPCR assay, transcriptome sequencing, RNA-pulldown assay, mass spectrometry, RIP-PCR and Western blot were used to investigate the regulatory factors of CYP1B1-AS1 expression and the molecular mechanism of CYP1B1-AS1 involved in neddylation modification. RESULTS: We found that CYP1B1-AS1 was down-regulated in breast cancer tissues and correlated with prognosis. In vivo and in vitro functional experiments confirmed that CYP1B1-AS1 inhibited cell proliferation and induced apoptosis. Mechanistically, CYP1B1-AS1 was regulated by the transcription factor, forkhead box O1 (FOXO1), and could be upregulated by inhibiting the PI3K/FOXO1 pathway. Moreover, CYP1B1-AS1 bound directly to NEDD8 activating enzyme E1 subunit 1 (NAE1) to regulate protein neddylation. CONCLUSION: This study reports for the first time that CYP1B1-AS1 inhibits protein neddylation to affect breast cancer cell proliferation, which provides a new strategy for the treatment of breast cancer by lncRNA targeting neddylation modification.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Antissenso , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Apoptose/genética , Proliferação de Células/genética , Proteína Forkhead Box O1/genética , Citocromo P-450 CYP1B1
17.
Aging (Albany NY) ; 15(12): 5826-5853, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367950

RESUMO

To explore effects of aging-related genes (ARGs) on the prognosis of Acute Myeloid Leukemia (AML), a seven-ARGs signature was developed and validated in AML patients. The numbers of seven-ARG sequences were selected to construct the survival prognostic signature in TCGA-LAML cohort, and two GEO datasets were used independently to verify the prognostic values of signature. According to seven-ARGs signature, patients were categorized into two subgroups. Patients with high-risk prognostic score were defined as HRPS-group/high-risk group, while others were set as LRPS-group/low-risk group. HRPS-group presented adverse overall survival (OS) than LRPS-group in TCGA-AML cohort (HR=3.39, P<0.001). In validation, the results emphasized a satisfactory discrimination in different time points, and confirmed the poor OS of HRPS-group both in GSE37642 (HR=1.96, P=0.001) and GSE106291 (HR=1.88, P<0.001). Many signal pathways, including immune- and tumor-related processes, especially NF-κB signaling, were highly enriched in HRPS-group. Coupled with high immune-inflamed infiltration, the HRPS-group was highly associated with the driver gene and oncogenic signaling pathway of TP53. Prediction of blockade therapy targeting immune checkpoint indicated varied benefits base on the different ARGs signature score, and the results of predicted drug response suggested that Pevonedistat, an inhibitor of NEDD8-activating enzyme, targeting NF-κB signaling, may have potential therapeutic value for HRPS-group. Compared with clinical factors alone, the signature had an independent value and more predictive power of AML prognosis. The 7-ARGs signature may help to guide clinical-decision making to predict drug response, and survival in AML patients.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Humanos , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Envelhecimento , Tomada de Decisão Clínica
18.
Int J Oncol ; 62(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37083098

RESUMO

As a protein that resembles ubiquitin, neural precursor cell expressed developmentally downregulated 8 (NEDD8) takes part in neddylation, which modifies substrates in a manner similar to ubiquitination and alters the activity of target proteins. Neddylation may affect the activity of multiple signaling pathways, have a regulatory role in tumor formation, progression and metastasis, and influence the prognosis of cancer treatment. The present review summarizes the regulatory roles of NEDD8 in the MDM2­p53, NF­κB, PI3K/AKT/mTOR, hypoxia­inducible factor, Hippo and receptor tyrosine kinase signaling pathways, as well as in the development and progression of lung cancer.


Assuntos
Neoplasias Pulmonares , Ubiquitinas , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ubiquitinação
19.
Cell ; 186(9): 1895-1911.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37028429

RESUMO

Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.


Assuntos
Proteínas Culina , Proteínas F-Box , Proteínas Ligases SKP Culina F-Box , Fatores de Transcrição , Humanos , Proteínas Culina/química , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Conformação Molecular , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805027

RESUMO

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Transporte , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA