Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39229977

RESUMO

Neurological disorders are devastating conditions affecting both cognitive and motorrelated functions in aged people. Yet there is no proper medication to treat these illnesses, and the currently available medications can only provide symptomatic relief to the patients. All neurological disorders share the same etiology, such as oxidative stress, mitochondrial dysfunction, neurochemical deficiency, neuronal loss, apoptosis, endoplasmic reticulum stress, neuroinflammation, and disease-related protein aggregation. Nowadays, researchers use antioxidant-based strategies to prevent or halt the disease progression. Nerolidol, a strong antioxidant, possesses various biological activities and properties that treat cardiotoxicity, nephrotoxicity, neurotoxicity, and many other diseases. Many recent publications and research studies highlight the beneficial effect of nerolidol on brain disorders. In Alzheimer's disease, nerolidol shows neuroprotection by decreasing amyloid plaque formation, lipid peroxidation, cholinergic neuronal loss, locomotor dysfunction, neuroinflammation, and hippocampal damage via enhancing antioxidant expression. Also, it shows neuroprotection against rotenone-induced neurotoxicity by inhibiting microglial activation. Another study reported that nerolidol shows antiepileptic effects in animal models by suppressing kindling-induced memory impairment by decreasing oxidative stress. It has been found that NRL administration increases the antioxidant levels, decreasing the proinflammatory cytokine release as well as decreasing the apoptotic protein and cerebral infarct size. In conclusion, nerolidol tends to reverse the harmful effects of disease-related factors, including OS, neuroinflammation, protein aggregation, and apoptosis, making nerolidol a choiceable drug for the management of neurological disorders. The purpose of this review is to discuss the mechanism of nerolidol in treating various neurological disorders.

2.
J Ethnopharmacol ; 334: 118542, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992404

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dried roots of Peucedanum decursivum, a traditional Chinese medicine (TCM), has historically respiratory diseases such as cough, thick phlegm, headache, fever, and gynecological diseases, rheumatoid arthritis, and nasopharyngeal carcinoma. AIM OF THE STUDY: Made an endeavor to evaluate the research trajectory of P. decursivum, comprehensively discern its developmental status, and offer a guideline for future investigations. MATERIALS AND METHODS: A meticulous search of literatures and books from 1955 to 2024 via databases like PubMed, Web of Science and CNKI was conducted, including topics and keywords of " P. decursivum" "Angelica decursivum" and "Zihua Qianhu". RESULTS: P. decursivum and its prescriptions have traditionally been used for treating phlegm-heat cough, wind-heat cough, gastrointestinal diseases, pain relief and so on. It contains 234 identified compounds, encompassing coumarins, terpenes, volatile oils, phenolic acids, fatty acids and derivatives. It exhibits diverse pharmacological activities, including anti-asthmatic, anti-inflammatory, antioxidant effects, anti-hypertensive, anti-diabetic, anti-Alzheimer, and anti-cancer properties, primarily attributed to coumarins. Microscopic identification, HPLC fingerprinting, and bioinformatics identification are the primary methods currently used for the quality control. CONCLUSION: P. decursivum demonstrates anti-asthmatic, anti-inflammatory, and antioxidant effects, aligning with its traditional use. However, experimental validation of its efficacy against phlegm and viruses is needed. Additionally, analgesic effects mentioned in historical texts lack modern pharmacological studies. Numerous isolated compounds exhibit highly valuable medicinal properties. Future research can delve into exploring these substances further. Rigorous of heavy metal contamination, particularly Cd and Pb, is necessary. Simultaneously, investigating its pharmacokinetics and toxicity in humans is crucial for the safety.


Assuntos
Apiaceae , Etnobotânica , Etnofarmacologia , Compostos Fitoquímicos , Controle de Qualidade , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Apiaceae/química , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos
3.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1538029

RESUMO

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Assuntos
Sesquiterpenos/administração & dosagem , Doenças Vasculares/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Sobrevivência Celular , Lipopolissacarídeos/toxicidade , Western Blotting , Óxido Nítrico Sintase , Reação em Cadeia da Polimerase em Tempo Real
4.
Tissue Cell ; 89: 102444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945090

RESUMO

Injury to internal organs caused by myocardial infarction (MI), although often neglected, is a very serious condition which damages internal organs especially the lungs. Changes in microcirculation can begin with acute lung injury and result in severe respiratory failure. The aim of this study was to create new approaches that will explain the pathophysiology and treatment of the disease by examining the therapeutic effects of vitamin D (VITD) and Nerolidol (NRD) on the injuries of the lungs caused by MI, and their relationship with asprosin / spexin proteins. METHODS: Six groups of seven experimental animals each were constituted. Control, VITD (only 50 IU/day during the experiment), NRD (only 100 mg/kg/day during the experiment), MI (200 mg/kg isoproterenol was administered to rats as a single dose subcutaneously), MI+VITD (200 mg/kg isoproterenol +50 IU/day) and MI+NRD (200 mg/kg isoproterenol +100 mg/kg/day) were the six (6) groups constituted. Tissues were analyzed using histopathological and immunohistochemical methods, whereas serum samples were analyzed using ELISA method. RESULTS: The result of the histopathological study for the MI group showed an observed increase in inflammatory cells, congestion, interalveolar septal thickening, erythrocyteloaded macrophages and fibrosis in the lung tissues. The treatment groups however recorded significant differences with regards to these parameters. In the immunohistochemical analysis, expressions of asprosin and spexin were observed in the smooth muscle structures and interalveolar areas of the vessels and bronchioles of the lung, as well as the bronchiole epithelium. There was no significant difference between the groups in terms of asprosin and spexin expression in the bronchiol epithelium. When immunohistochemical and serum ELISA results were examined, it was observed that asprosin levels increased significantly in the lung tissues of the MI group compared to the control group, decreased significantly in the treatment groups treated with Vitamin D and NRD after MI. While spexin decreased significantly in the MI group compared to the control group, it increased significantly in the MI+VITD group, but did not change in the MI+NRD group. CONCLUSION: It was observed that serious injuries occurred in the lungs due to myocardial infarction and that, VITD and NRD treatments had a curative effect on those injuries. It was also observed that Asprosin and Speksin proteins can have effect on mechanisms of both injury and therapy of the lung. Furthermore, the curative effects of VITD are dependent on the expression of asprosin and spexin; whereas the observation indicated that nerolidol could be effective through asprosin-dependent mechanisms and specisin by independent mechanisms.


Assuntos
Infarto do Miocárdio , Sesquiterpenos , Vitamina D , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Ratos , Vitamina D/farmacologia , Masculino , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Isoproterenol/farmacologia , Ratos Wistar
5.
Biofactors ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624190

RESUMO

Despite the observation of diabetes-induced brain tissue damage and impaired learning and memory, the underlying mechanism of damage remains elusive, and effective, targeted therapeutics are lacking. Notably, the NLRP3 inflammasome is highly expressed in the hippocampus of diabetic individuals. Nerolidol, a naturally occurring compound with anti-inflammatory and antioxidant properties, has been identified as a potential therapeutic option for metabolic disorders. However, the ameliorative capacity of nerolidol on diabetic hippocampal injury and its underlying mechanism remain unclear. Network pharmacology and molecular docking was used to predict the signaling pathways and therapeutic targets of nerolidol for the treatment of diabetes. Then established a diabetic rat model using streptozotocin (STZ) combined with a high-fat diet and nerolidol was administered. Morris water maze to assess spatial learning memory capacity. Hematoxylin and eosin and Nissl staining was used to detect neuronal damage in the diabetic hippocampus. Transmission electron microscopy was used to detect the extent of damage to mitochondria, endoplasmic reticulum (ER) and synapses. Immunofluorescence was used to detect GFAP, IBA1, and NLRP3 expression in the hippocampus. Western blot was used to detect apoptosis (Bcl-2, BAX, and Cleaved-Caspase-3); synapses (postsynaptic densifying protein 95, SYN1, and Synaptophysin); mitochondria (DRP1, OPA1, MFN1, and MFN2); ER (GRP78, ATF6, CHOP, and caspase-12); NLRP3 inflammasome (NLRP3, ASC, and caspase-1); inflammatory cytokines (IL-18, IL-1ß, and TNF-α); AKT (P-AKT); and mitogen-activated protein kinase (MAPK) pathway (P-ERK, P-p38, and P-JNK) related protein expression. Network pharmacology showed that nerolidol's possible mechanisms for treating diabetes are the MAPK/AKT pathway and anti-inflammatory effects. Animal experiments demonstrated that nerolidol could improve blood glucose, blood lipids, and hippocampal neuronal damage in diabetic rats. Furthermore, nerolidol could improve synaptic, mitochondrial, and ER damage in the hippocampal ultrastructure of diabetic rats by potentially affecting synaptic, mitochondrial, and ER-related proteins. Further studies revealed that nerolidol decreased neuroinflammation, NLRP3 and inflammatory factor expression in hippocampal tissue while also decreasing MAPK pathway expression and enhancing AKT pathway expression. However, nerolidol improves hippocampal damage in diabetic rats cannot be shown to improve cognitive function. In conclusion, our study reveals for the first time that nerolidol can ameliorate hippocampal damage, neuroinflammation, synaptic, ER, and mitochondrial damage in diabetic rats. Furthermore, we suggest that nerolidol may inhibit NLRP3 inflammasome and affected the expression of MAPK and AKT. These findings provide a new experimental basis for the use of nerolidol to ameliorate diabetes-induced brain tissue damage and the associated disease.

6.
J Agric Food Chem ; 72(3): 1571-1581, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206573

RESUMO

Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Vespas , Animais , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Óxido Nítrico Sintase , China
7.
Cell Biochem Funct ; 42(1): e3899, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088534

RESUMO

Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-ß to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-ß/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-ß-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-ß/Smad signaling.


Assuntos
Asma , Microbioma Gastrointestinal , Sesquiterpenos , Animais , Camundongos , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Remodelação das Vias Aéreas , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos BALB C , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Sesquiterpenos/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar/química , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças
8.
Appl Biochem Biotechnol ; 196(3): 1365-1375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37395945

RESUMO

Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.


Assuntos
Apoptose , Neoplasias do Colo , Sesquiterpenos , Feminino , Humanos , Células HCT116 , Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Ciclo Celular
9.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686136

RESUMO

Various plant species contain terpene secondary metabolites, which disrupt insect growth and development by affecting the activity of juvenile hormone-degrading enzymes, and the juvenile hormone (JH) titers maintained in insects. Nerolidol, a natural sesquiterpenol belonging to the terpenoid group, exhibits structural similarities to insect JHs. However, the impact of nerolidol on insect growth and development, as well as its underlying molecular mechanism, remains unclear. Here, the effects of nerolidol on Spodoptera exigua were investigated under treatment at various sub-lethal doses (4.0 mg/mL, 1.0 mg/mL, 0.25 mg/mL). We found that a higher dose (4.0 mg/mL) of nerolidol significantly impaired the normal growth, development, and population reproduction of S. exigua, although a relatively lower dose (0.25 mg/mL) of nerolidol had no significant effect on this growth and development. Combined transcriptome sequencing and gene family analysis further revealed that four juvenile hormone esterase (JHE)-family genes that are involved in juvenile hormone degradation were significantly altered in S. exigua larvae after nerolidol treatment (4.0 mg/mL). Interestingly, the juvenile hormone esterase-like (JHEL) gene Sexi006721, a critical element responsive to nerolidol stress, was closely linked with the significant augmentation of JHE activity and JH titer in S. exigua (R2 = 0.94, p < 0.01). Taken together, we speculate that nerolidol can function as an analog of JH by modulating the expression of the enzyme genes responsible for degrading JH, resulting in JH disorders and ultimately disrupting the development of insect larvae. This study ultimately provides a theoretical basis for the sustainable control of S. exigua in the field whilst proposing a new perspective for the development of novel biological pesticides.


Assuntos
Sesquiterpenos , Animais , Spodoptera/genética , Sesquiterpenos/farmacologia , Terpenos/farmacologia , Insetos , Hormônios Juvenis/farmacologia
10.
Adv Clin Exp Med ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747443

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a lethal brain tumor with high mortality and morbidity. Nerolidol (NRD) is a sesquiterpene alcohol sequestered from the essential oils of aromatic florae with potent antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective activity. OBJECTIVES: The aim of the study was to investigate the underlying cell-cycle mechanisms of NRD-mediated antiproliferative and apoptosis activities in GBM using human U-251 cells. MATERIAL AND METHODS: The current research investigated the antiproliferative and apoptotic activities of NRD on U-251 cells. The effects of NRD were measured using a Cell Counting Kit-8 (CCK-8) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, messenger ribonucleic acid (mRNA) level assessment, and western blot assay. RESULTS: Nerolidol decreased U-251 viability in a dose-dependent manner, as well as induced apoptotic activity, reduced B-cell lymphoma-2 (BCL-2) levels, and increased mRNA expression of BCL-2-associated X (Bax), caspase-3 and caspase-9. The attenuation of the cyclin-D1, cyclin-dependent kinase 4 (CDK4) and CDK6 mRNA expression confirmed cell cycle regulation. Western blot analysis of CDK1 indicated reductions in cyclin-B1 and p21. Furthermore, NRD prompted apoptosis through p38 amelioration and increased phosphorylated extracellular signal-related kinase 1 (p-ERK1) and phosphorylated c-Jun N-terminal protein kinase 1 (p-JNK1) levels. CONCLUSIONS: Nerolidol inhibited GBM cell viability and induced apoptosis through the regulation of cell-cycle proteins via p38 mitogen-activated protein kinase (MAPK) signaling pathways. Thus, NRD could be developed as a potential natural therapeutic agent for GBM.

11.
Exp Parasitol ; 251: 108569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330107

RESUMO

Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 µM compared to propoxur (IC50: 5.13 ± 0.62 µM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 µM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 µM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.


Assuntos
Anopheles , Inseticidas , Malária , Óleos Voláteis , Animais , Feminino , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Propoxur/farmacologia , Farneseno Álcool/farmacologia , Mosquitos Vetores , Larva , Estágios do Ciclo de Vida
12.
J Agric Food Chem ; 71(22): 8479-8487, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148252

RESUMO

Isoprenoids, or terpenoids, have wide applications in food, feed, pharmaceutical, and cosmetic industries. Nerolidol, an acyclic C15 isoprenoid, is widely used in cosmetics, food, and personal care products. Current supply of nerolidol is mainly from plant extraction that is inefficient, costly, and of inconsistent quality. Here, we screened various nerolidol synthases from bacteria, fungi, and plants and found that the strawberry nerolidol synthase was most active in Escherichia coli. Through systematic optimization of the biosynthetic pathways, carbon sources, inducer, and genome editing, we constructed a series of deletion strains (single mutants ΔldhA, ΔpoxB, ΔpflB, and ΔtnaA; double mutants ΔadhE-ΔldhA; and triple mutants and beyond ΔadhE-ΔldhA-ΔpflB and ΔadhE-ΔldhA-ΔackA-pta) that produced high yields of 100% trans-nerolidol. In flasks, the highest nerolidol titers were 1.8 and 3.3 g/L in glucose-only and glucose-lactose-glycerol media, respectively. The highest yield reached 26.2% (g/g), >90% of the theoretic yield. In two-phase extractive fed-batch fermentation, our strain produced ∼16 g/L nerolidol within 4 days with about 9% carbon yield (g/g). In a single-phase fed-batch fermentation, the strain produced >6.8 g/L nerolidol in 3 days. To the best of our knowledge, our titers and productivity are the highest in the literature, paving the way for future commercialization and inspiring biosynthesis of other isoprenoids.


Assuntos
Glicerol , Açúcares , Açúcares/metabolismo , Glicerol/metabolismo , Fermentação , Glucose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Terpenos/metabolismo , Engenharia Metabólica
13.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049744

RESUMO

Inflammation of the GI tract leads to compromised epithelial barrier integrity, which increases intestine permeability. A compromised intestinal barrier is a critical event that leads to microbe entry and promotes inflammatory responses. Inflammatory bowel diseases that comprise Crohn's disease (CD) and ulcerative colitis (UC) show an increase in intestinal permeability. Nerolidol (NED), a naturally occurring sesquiterpene alcohol, has potent anti-inflammatory properties in preclinical models of colon inflammation. In this study, we investigated the effect of NED on MAPKs, NF-κB signaling pathways, and intestine epithelial tight junction physiology using in vivo and in vitro models. The effect of NED on proinflammatory cytokine release and MAPK and NF-κB signaling pathways were evaluated using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. Subsequently, the role of NED on MAPKs, NF-κB signaling, and the intestine tight junction integrity were assessed using DSS-induced colitis and LPS-stimulated Caco-2 cell culture models. Our result indicates that NED pre-treatment significantly inhibited proinflammatory cytokine release, expression of proteins involved in MAP kinase, and NF-κB signaling pathways in LPS-stimulated RAW macrophages and DSS-induced colitis. Furthermore, NED treatment significantly decreased FITC-dextran permeability in DSS-induced colitis. NED treatment enhanced tight junction protein expression (claudin-1, 3, 7, and occludin). Time-dependent increases in transepithelial electrical resistance (TEER) measurements reflect the formation of healthy tight junctions in the Caco-2 monolayer. LPS-stimulated Caco-2 showed a significant decrease in TEER. However, NED pre-treatment significantly prevented the fall in TEER measurements, indicating its protective role. In conclusion, NED significantly decreased MAPK and NF-κB signaling pathways and decreased tight junction permeability by enhancing epithelial tight junction protein expression.


Assuntos
Colite , Sesquiterpenos , Humanos , NF-kappa B/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Lipopolissacarídeos/farmacologia , Mucosa Intestinal/metabolismo , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sesquiterpenos/farmacologia , Proteínas de Junções Íntimas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos
14.
Food Chem X ; 17: 100616, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36974179

RESUMO

Processing is extremely important for the formation of aroma characteristic of tea leaves. In this study, the effects of processing on the content of volatile compounds, aroma intensity and odor characteristic of Shuixian tea were analyzed. The results showed that the content of volatile compounds in Shuixian tea increased significantly after processing, among which terpenoids and esters were the highest. There were 18 key compounds constituting the aroma characteristics of Shuixian tea, among which geraniol and nerol were the most important compounds, which contributed 96.28% to the aroma of Shuixian tea. The odor characteristics of Shuixian tea were mainly floral and fruity and the contribution of floral mainly came from geraniol, while fruity mainly came from nerol. Geraniol and nerol compounds increased rapidly after the withering process of tea leaves. This study provided an important reference for the improvement of processing technology and quality enhancement of Shuixian tea.

15.
Metab Eng ; 77: 143-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990382

RESUMO

The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Geraniltranstransferase/genética , Proteômica , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Terpenos
16.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765938

RESUMO

Nerolidol is a naturally occurring sesquiterpene alcohol with multiple properties, including antioxidant, antibacterial, and antiparasitic activities. A few studies investigating the antitumor properties of nerolidol have shown positive results in both cell culture and mouse models. In this study, we investigated the antitumor mechanism of cis-nerolidol in bladder carcinoma cell lines. The results of our experiments on two bladder carcinoma cell lines revealed that nerolidol inhibited cell proliferation and induced two distinct cell death pathways. We confirmed that cis-nerolidol induces DNA damage and ER stress. A mechanistic study identified a common cAMP, Ca2+, and MAPK axis involved in signal propagation and amplification, leading to ER stress. Inhibition of any part of this signaling cascade prevented both cell death pathways. The two cell death mechanisms can be distinguished by the involvement of caspases. The early occurring cell death pathway is characterized by membrane blebbing and cell swelling followed by membrane rupture, which can be prevented by the inhibition of caspase activation. In the late cell death pathway, which was found to be caspase-independent, cytoplasmic vacuolization and changes in cell shape were observed. cis-Nerolidol shows promising antitumor activity through an unorthodox mechanism of action that could help target resistant forms of malignancies, such as bladder cancer.

17.
Life Sci ; 315: 121380, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640898

RESUMO

AIMS: Although nerolidol (NRL) is a naturally occurring sesquiterpene alcohol with many pharmacological activities, its role in dehydroepiandrosterone DHEA-induced polycystic ovary syndrome PCOS is unknown. This study aims to explore the potential beneficial effects and underlying molecular mechanisms of nerolidol treatment on polycystic ovary syndrome. MAIN METHODS: Pre-pubertal female Sprague-Dawley rats were randomly assigned into four groups (n = 8/group); group I: control; group II: PCOS; group III: P + NRL; group IV: NRL. Biochemical parameters related to oxidative stress, inflammation, apoptosis, and hormones were estimated in the blood and ovarian tissues. Histopathological, ultrastructural, and immunohistochemical analyses were performed. Bax, P53, Cas-3, and Bcl-2 gene expression levels were detected with RT-PCR. The membrane array analysis detected chemokine, cytokine, and growth factor protein profiles. KEY FINDINGS: In light of the available data, it can deduce that nerolidol has a significant ameliorating effect on lipid peroxidation, oxidative stress, inflammation, histopathological damage, and apoptosis accompanying PCOS in female rats. SIGNIFICANCE: PCOS is not only a reproductive pathology but also a systemic condition and its etiopathogenesis is still not fully understood. Since changes in PCOS have important long-term effects on health, this study evaluated the efficacy of nerolidol, a phytotherapeutic for the control of biochemical, apoptotic, histopathological, and metabolic changes.


Assuntos
Síndrome do Ovário Policístico , Sesquiterpenos , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Ratos Sprague-Dawley , Sesquiterpenos/efeitos adversos , Estresse Oxidativo , Inflamação/tratamento farmacológico , Apoptose , Desidroepiandrosterona/uso terapêutico , Modelos Animais de Doenças
18.
Nutrients ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678327

RESUMO

Efforts to decrease the deleterious effects of renal ischemia-reperfusion injury (IRI) are ongoing. Recently, there has been increasing interest in using natural phytochemical compounds as alternative remedies in several diseases. Nerolidol is a natural product extracted from plants with floral odors and has been proven to be effective for the treatment of some conditions. We investigated the effect of nerolidol in a rat model of renal IRI. Nerolidol was dissolved in a vehicle and administered orally as single daily dose of 200 mg/kg for 5 days prior to IRI and continued for 3 days post IRI. G-Sham (n = 10) underwent sham surgery, whereas G-IRI (n = 10) and G-IRI/NR (n = 10) underwent bilateral warm renal ischemia for 30 min and received the vehicle/nerolidol, respectively. Renal functions and histological changes were assessed before starting the medication, just prior to IRI and 3 days after IRI. Nerolidol significantly attenuated the alterations in serum creatinine and urea, creatinine clearance, urinary albumin and the urinary albumin-creatinine ratio. Nerolidol also significantly attenuated the alterations in markers of kidney injury; proinflammatory, profibrotic and apoptotic cytokines; oxidative stress markers; and histological changes. We conclude that nerolidol has a renoprotective effect on IRI-induced renal dysfunction. These findings might have clinical implications.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Ratos , Animais , Injúria Renal Aguda/patologia , Creatinina , Rim , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Albuminas/farmacologia
19.
J Biomol Struct Dyn ; 41(12): 5685-5695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35787240

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to characterize the interactions of amphotericin B (AmB), miltefosine (MIL) and nerolidol (NER) with the plasma membrane of Paracoccidioides brasiliensis. Spin-labeled analogs of stearic acid and steroid androstane distributed into the plasma membrane of the fungus treated with AmB, showed strong interactions with putative AmB/sterol complexes. The observed increase in the EPR parameter 2A// caused by AmB can be interpreted as a remarkable reduction in the spin label mobility and/or an increase in the local polarity. The 2A// parameter reduced gradually as the concentration of MIL and NER increased. The membrane-water partition coefficient (KM/W) of the three compounds under study was estimated based on the minimum concentration of the compounds that causes a change in EPR spectrum. The KM/W values indicated that the affinity of the compounds for the P. brasiliensis membrane follows the order: AmB > MIL > NER. The minimum inhibitory concentration (MIC) values were lower than the respective minimum concentrations of the compounds to cause a change in the EPR spectrum, being ∼3.5-fold lower for AmB, 3.9-fold for MIL and ∼1.4-fold for NER. Taken together, the EPR spectroscopy results suggest that the anti-proliferative effects of the three compounds studied are associated with alterations in cell membranes. One of the most likely consequences of these changes would be electrolyte leakage.Communicated by Ramaswamy H. Sarma.


Assuntos
Anfotericina B , Paracoccidioides , Espectroscopia de Ressonância de Spin Eletrônica , Anfotericina B/farmacologia , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Marcadores de Spin
20.
Nat Prod Res ; 37(14): 2427-2431, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35298315

RESUMO

Stachys is a large genus of economically important plants belonging to Lamiaceae family that includes about 300 species as annual or perennial herbs. Several species of this genus are extensively used in various traditional medicines. In the present study the chemical composition of the essential oil from aerial parts of Stachys spreitzenhoferi Heldr., a very rare plant, belonging to Section Candidae, endemic of South Greece and collected in the island of Kythira, was analysed by GC-MS. No one reports have been previously published on this species. The result showed the presence of large quantity of diterpenoids with manoyl oxide (22.1%), as the most abundant component. Other metabolites present in high quantity were trans-nerolidol (18.5%), ß-caryophyllene (11.0%) and germacrene D (8.1%). Chemotaxonomic considerations with respect all the other oils of Stachys taxa, belonging to the same section studied so far, were carried out.


Assuntos
Lamiaceae , Óleos Voláteis , Stachys , Óleos Voláteis/química , Lamiaceae/química , Grécia , Stachys/química , Componentes Aéreos da Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA